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Abstract
Atmosphericflows are governed by the equations offluid dynamics. These equations are nonlinear,
and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows
are inhomogeneous and anisotropic, the nonlinearitymaymanifest itself onlyweakly through
interactions of nontrivialmean fields with disturbances such as thermals or eddies. In such situations,
truncations of the hierarchy of cumulant equations hold promise as a closure strategy. Herewe show
how truncations at second order can be used tomodel and elucidate the dynamics of turbulent
atmospheric flows. Two examples are considered. First, we study the growth of a dry convective
boundary layer, which is heated frombelow, leading to turbulent upward energy transport and growth
of the boundary layer.We demonstrate that a quasilinear truncation of the equations ofmotion, in
which interactions of disturbances among each other are neglected but interactions withmean fields
are taken into account, can capture the growth of the convective boundary layer. However, it does not
capture important turbulent transport terms in the turbulence kinetic energy budget. Second, we
study the evolution of two-dimensional large-scale waves, which are representative of waves seen in
Earthʼs upper atmosphere.We demonstrate that a cumulant expansion truncated at second order
(CE2) can capture the evolution of suchwaves and their nonlinear interactionwith themean flow in
some circumstances, for example, when thewave amplitude is small enough or the planetary rotation
rate is large enough.However, CE2 fails to capture theflow evolutionwhen strongly nonlinear eddy–
eddy interactions that generate small-scale filaments in surf zones around critical layers become
important. Higher-order closures can capture thesemissing interactions. The results point to new
ways inwhich the dynamics of turbulent boundary layersmay be represented in climatemodels, and
they illustrate different classes of nonlinear processes that can control wave dissipation and angular
momentum fluxes in the upper troposphere.

1. Introduction

Atmosphericflows shape Earthʼs climate and are governed by the equations offluid dynamics, theNavier–
Stokes equations augmented by theCoriolis force and thermodynamic equations (e.g., Ooyama 2001,
Vallis 2006, Pauluis 2008), and equations for themicrophysical processes describing, for example, the formation
and re-evaporation of cloud droplets (Pruppacher et al 1998). They span an enormous range of length scales,
from themicrometers of droplet formation to the planetary scale. Temporal variations range from
microseconds at the smallest scales to tens of years on the largest scales (e.g., Klein 2010). Atmospheric processes
are tightly coupled across all of these scales. For example, cloud droplets scatter sunlight and absorb infrared
radiation, thereby affecting Earthʼs radiative balance globally; conversely, planetary-scale dynamics affect where
and how clouds form. Current climatemodels cannot resolve all relevant scales. They resort to the direct
simulation of dynamics on scales of tens of kilometers and larger, while representing smaller-scale processes
such as turbulence in clouds and boundary layers semi-empirically (e.g., Beljaars 1992, Garratt 1994,
Smith 1997, Lappen andRandall 2001, Soares 2004, Siebesma et al 2007). However, the larger-scale dynamics of
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weather systems, with timescales ofminutes, are simulated explicitly evenwhen only their longer-term statistics
—the climate—is ultimately of interest.

Two scientific objectives would be beneficial to achieve. First, it would be desirable to obtainmore accurate
andmore physicallymotivatedmodels of the interactions between the larger scales that can currently be resolved
in climatemodels and the smaller scales that cannot be resolved. Inaccuracies in how these interactions, in
particular in clouds and boundary layers, are represented in climatemodels are the largest source of
uncertainties in climate projections (e.g., Stephens 2005, Bony et al 2006, Soden andHeld 2006,Webb et al 2013,
Stevens andBony 2013, Vial et al 2013, Brient et al 2015). Improving the representation of such interactions
would have an enormous societal benefit. Second, it would be desirable to devise ways of calculating climate
statisticsmore directly, rather than through the direct simulation of weather systems and accumulation of their
statistics, as is currently done. Thismay in the long run lead to faster climate simulations. In the shorter term, it
may lead to insight into how climate ismaintained and how it varies on timescales of seasons tomillennia.

Both objectives require the development of closuremodels for the hierarchy of statisticalmoment or
cumulant equations associatedwith the equations offluid dynamics. This hierarchy is in principle infinite
because of the quadratic nonlinearity of theNavier–Stokes equations. Numerousways of closing the hierarchy
ofmoment or cumulant equations in a variety of circumstances have been proposed (see, e.g., Frisch 1995,
Pope 2000, Lesieur 2008).Many of them concern flows that are assumed statistically homogeneous and
isotropic, as an idealized benchmark fromwhich the development of closures formore realistic applications can
proceed (e.g., Orszag 1970,Orszag et al 1973). However, closures for homogeneous and isotropic turbulence
oftenmay not be easier to obtain than closures formore realisticflows:meanfields in homogeneous and
isotropic turbulence can, without loss of generality, be taken to be zero; only higher-order statistics of the flows
are of interest. Isotropic turbulence cannot equilibrate with any imposed driving and dissipation through
interactionwithmean flows; rather, itmust equilibrate through nonlinear interactions across scales. By contrast,
turbulence in the atmosphere usually interacts strongly with nontrivialmeanfields, which include, for example,
atmospheric jet streams or the thermal stratification of the atmosphere. Because interactions between turbulent
fluctuations and nontrivialmeanfields have the potential to be important,many atmospheric flowsmay be less
strongly nonlinear than the oft-studied prototype problems of three-dimensional turbulence (e.g.,
Pedlosky 1970, Farrell 1987, Randel andHeld 1991, Farrell and Ioannou 1993, Schneider andWalker 2006).
Moreover, already themeanfields (e.g.,mean temperatures andwinds) are of primary interest for
understanding climate, though, of course, highermoments (e.g., temperature extremes) also remain important
to understand.

Because the nonlinearity of turbulent interactions inmany atmospheric flowsmay be limited, truncating the
hierarchy ofmoment or cumulant equations at a low order has potential to be successful. Here we explore the
feasibility of truncations at second order—that is, neglecting third-order nonlinearities in second-order
covariance equations—in two prototype problems of atmospheric flows. Thefirst is a turbulent convective
boundary layer, with scales ofmotion on the order ofmeters to a kilometer. The second is amodel of large-scale
turbulence in the upper atmosphere, with scales ofmotion on the order of hundreds to thousands of kilometers.
These two problems involve disparate phenomenologies and force balances. For example, the boundary layer
can be taken to be unaffected by the planetary rotation, whereas the planetary rotation andCoriolis forces are
fundamental for the large-scale turbulence in the upper atmosphere. Yet the problems share that turbulent
fluctuations interact strongly with a nontrivialmean state—a thermal stratification in thefirst case, and an
atmospheric jet in the second case. Because of the strength of this interaction, truncations ofmoment equations
at second order already achieve some success in capturing the statistics of theseflows. It is essential in these
truncations that nonlocal and anisotropic covariation of turbulent quantities (e.g., inwaves or convective
plumes) are retained. Such nonlocal truncation of themoment or cumulant equations at second order is known
as second-order cumulant expansion (CE2) (Marston et al 2008,Marston 2012, Srinivasan andYoung 2012,
Tobias andMarston 2013) or stochastic structural stability theory (S3T) (Farrell and Ioannou 2003, 2007, Bakas
and Ioannou 2014, Constantinou et al 2014a). CE2 and S3T differ in that S3T attempts to representmissing
eddy–eddy interactions, whereas CE2 sets them to zero.

CE2 is a realizable closure in that its equations are the exactmoment equations of a realizable system, the
quasi-linear (QL) system that corresponds to the original equations ofmotion. TheQL approximation retains
the interaction of turbulent fluctuationswith ameanflowbut neglects the interactions of turbulent fluctuations
among each others. CE2 and S3Twere successful in explaining some aspects of zonal jet dynamics in rotating
flows (e.g., Farrell and Ioannou 2003, 2007, Srinivasan andYoung 2012, Bakas and Ioannou 2013, Tobias and
Marston 2013), without relying on eddy–eddy interactions and inverse cascades (Rhines 1975, Vallis and
Maltrud 1993). QL approximations of large-scale atmospheric dynamics, sometimes with added damping and
stochastic forcing, were partially successful in reproducing aspects of the atmospheric climate and its variability
(e.g.,Whitaker and Sardeshmukh 1998, Zhang andHeld 1999, DelSole 2001,O’Gorman and Schneider 2007).
At smaller scales, QL approximations also capture sheared stably stratifiedflowswhen the dynamics involve the
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linear excitation and absorption of internal gravity waves (Orr 1907, Lindzen 1988, Bakas and Ioannou 2007).
They also reproduce aspects of thermal convection, such as the dependence of the heatflux on the Rayleigh
number (e.g.,Malkus 1954,Herring 1963, Toomre et al 1977, Busse 1978,Niemela et al 2000).

Inwhat follows, we derive theCE2 closure for Boussinesqflows, present fully nonlinear andQL simulations
of a dry convective boundary layer using large-eddy simulations (LES), and study the evolution of a large-scale
wave disturbance on a zonal jet representative of the upper troposphere. The results will demonstrate the
potential and limitations of CE2 approaches.

2. CE2 of Boussinesqflow

2.1. Boussinesqflow
Atmosphericflows have lowMach number, so soundwaves are generally unimportant for the dynamics. It is
therefore common to study atmospheric dynamics with approximations to theNavier–Stokes equations that
filter soundwaves. The simplest such approximation, which ignores all density variations except where they
affect the buoyancy of airmasses, is the Boussinesq approximation (Boussinesq 1872). The Boussinesq equations
are obtained by expressing density r r dr= +( ) ( )t tr r, ,0 as a sumof a constant density r0 in a reference state
andfluctuations dr ( )tr, about it, assuming pressure variations in the reference state are hydrostatically
balanced, and retaining only the leading-order terms in density and pressure fluctuations in an expansion of the
Navier–Stokes equations. The resulting equations are (e.g., Vallis 2006)

W¶
¶

+  + ´ = -F + +( · ) ( ) ( )
t

b a
u

u u u k2 momentum equation , 1u

 =· ( ) ( )bu 0 continuity equation , 1


¶
¶

+  =· ( ) ( )b

t
b cu thermodynamic equation . 1b

Here, u denotes the three-dimensional velocity, dp the pressure perturbation associatedwith the density
perturbation dr, d rF = p 0 the potential of the pressure-gradient accelerations, and dr r= -b g 0 the
buoyancy (g is an effective gravitational acceleration and k is the local vertical). The reference frame rotates with
the constant angular velocityW of the planetary rotation, as a result of whichCoriolis accelerations ( W ´ u2 )
appear in themomentum equation. Centrifugal accelerations are subsumed in g, the effective gravitational
acceleration. The terms u and b on the right-hand side represent dissipation and forcing terms (for example,
friction and diabatic heating). The continuity equation reduces to the condition that the flow u is nondivergent.
Soundwaves are filtered from these equations because no time derivative appears in the continuity equation. In
effect, the speed of sound is taken to be infinite, so that pressure adjusts instantaneously across theflowdomain:
it can be determined from aPoisson equation obtained by taking the divergence of themomentum equation and
using the nondivergence condition to eliminate the time derivative.

Towrite the equations in a synthetic way, we introduce the state vector

Y = ( ) ( )u v w b, , , 2T

of the flow that contains all prognostic variables inCartesian coordinates (the superscript (·)T indicates the
transpose). The set of equations (1) can then bewritten compactly as

Y Y Y¶
¶

+  Ä = - F +· ( ) ( )
t

au L F 3

 =· ( )bu 0, 3

where the outer product (Ä) of the two vectorsY and u is defined as

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥  

 
Y Ä =

Y Y

Y Y
= Y


  


( ) ( )

u u

u u
uu . 4i j i

j

1 1 1 3

4 1 4 3

1 4
1 3

The components of the divergence of the second-order term Y Ä· ( )u are

Y Ä =
¶
¶

Y[ · ( )] [ ] ( )
r

uu , 5i
j

i j

where summation over repeated indices is implied. This notation extends the usual advection operator of a
scalarfield by a nondivergent flow to the advection of a vector field. The linear operator L contains accelerations
owing to theCoriolis force, buoyancy, as well as nonconservative terms (e.g., friction or diabatic heating) that are
linear in the state vector. The vector F contains all other nonconservative terms.We have expanded u, the outer
product and the · in Cartesian coordinates for simplicity, however the formalism is coordinate independent.
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Despite their relative simplicity, the Boussinesq equations are commonly used to study turbulence in
boundary layers, inwhich density variations areweak. They also underlie classical conceptualmodels of large-
scale atmospheric dynamics (e.g., quasigeostrophicmodels), inwhich they become quantitatively inaccurate but
still qualitatively capture important atmospheric phenomena such as Rossbywaves and baroclinic instability.
The Boussinesq equations are well suited for our exposition of CE2 approaches because they capture the
essential nonlinearity of atmospheric flows: the conservative quadratic nonlinearity of the advection operators

( · )u u and · bu .

2.2. Averaging operator
Our interest is not in individual details of the atmospheric flows under consideration but in their statistics,
includingmean values and highermoments. Therefore, we define an averaging operator, denotedwith an
overline (·), and decompose any scalar field ( )f tr, into amean and afluctuating part

= + ¢( ) ¯ ( ) ( ) ( )f t f t f tr r r, , , . 6

Themean is in general a function of space and time. Thefluctuating part is commonly referred to as an eddy. The
averaging operator is taken to satisfy, for all scalar fields ( )f tr, and ( )g tr, and any constant c, the Reynolds
properties (Monin andYaglom 1971):

= ( )c c a, 7

+ = +¯ ¯ ( ) ( )cf g cf g blinearity , 7

=¯ ¯ ¯ ( )f g f g c, 7

¶ = ¶¯ ( ) ( )f f dcommutation with derivatives . 7

Properties (7a)–(7c) imply that the averaging operator is a projection operator and so is idempotent =¯̄ ¯f f .
Theymake it possible to define the Reynolds decomposition

= + ¢ ¢¯ ¯ ( )fg f g f g . 8

For a vector quantityY, the averageY is the component-wise average.
The choice of average is unspecified as long as it satisfies the Reynolds properties. Conceptually, ensemble

averages are statisticallymeaningful, and they naturally satisfy the Reynolds properties. In practice, however,
they can be difficult to obtain. Averages over sufficiently long times in statistically stationary (or slowly varying)
flows or over sufficiently large regions in statistically homogeneous flows aremore commonly used in practice,
and also approximately satisfy the Reynolds properties. In concrete calculations, we choose the averages that are
natural given the statistical symmetries of the problemunder consideration. For example, inflows that are
statistically invariant under translations along a spatial coordinate (e.g., along latitude circles), an average along
that spatial coordinate suggests itself.

Formore generalflow equations with a variable density, the averaging operator above has to be replaced by a
density-weighted average, to obtain consistent equations ofmotion for the statisticalmoments that resemble the
Boussinesqmoment equations formally. An example for the anelastic approximation is provided in appendix A.

2.3. Cumulant expansion
First cumulant
Thefirst cumulant is themeanY( )tr, , for which the equations ofmotion are obtained by averaging the
equations ofmotion (3):

f
Y Y Y Y¶
¶

+  Ä = - ¢ Ä ¢ + -  +
¯

· ( ¯ ¯ ) · ( ) ¯ ¯ ( )
t

au u L F, 9

 =· ¯ ( )bu 0. 9

This involves the covariance Y ¢ Ä ¢· ( )u , which arises from the quadratic nonlinearity of the equations of
motion. It represents eddyfluxes, for example, arising from advection ofmomentum fluctuations by the eddies
(fluctuations) themselves. Because the equation for themean involves a covariance, it is not closed.

Second cumulant
The second cumulant is the second centralmoment, or the covariance

Y Y= ¢ Ä ¢( ) ( ) ( ) ( )t t tC r r r r, , , , . 101 2 1 2

Weonly consider the prognostic variables here, because the diagnostic variables (and hence their statistics) can
be obtained from them.We also only consider equal-time cumulants, that is, equal-time covariances between
prognostic variables at the two points r1 and r2, which need not be equal. The covariance tensor is symmetric
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=( ) ( ) ( )t tC r r C r r, , , , . 111 2
T

2 1

Weadditionally define the auxiliary covariances

Y= F¢ ¢F( ) ( ) ( ) ( )t t t aC r r r r, , , , , 121 2 1 2

Y= ¢ Ä ¢( ) ( ) ( ) ( )t t t bC r r r u r, , , , . 12u
1 2 1 2

Thefirst, FC , contains additional information about covariation of the prognostic fieldsYwith the pressure
potentialΦ. These covariances can be calculated from C and Y because the pressure potentialΦ is a diagnostic
variable in the Boussinesq approximation. The second, Cu, represents covariation of the velocityfieldwith other
prognostic variables and is already contained in C.

The second cumulant equation can be obtained from the equations ofmotion (3) by evaluating

Y Y Y Y¶
¶

= ¢ Ä
¶ ¢

¶
+

¶ ¢

¶
Ä ¢( ) ( ) ( ) ( ) ( ) ( )

t
t t

t

t

t

t
tC r r r

r r
r, , ,

, ,
, . 131 2 1

2 1
2

Discarding terms that are third order influctuating quantities, one obtains

Y

¶
¶

+  Ä = - Y

+ +  + ¢ Ä ¢ +f

( ) · [ ( ) ¯ ( )] ( )[ ¯ ( )]

( ) ( ) ( ) ( ) { ⟷ } ( )
t

t t t t t

t t

C r r C r r u r C r r r

L C r r C r r F r t r t r r

, , , , , , , ,

, , , , , , , 14

u
r

r

1 2 1 2 1 1 2 2
T

1 2 1 2 1 2 1 2

1

1

where { ⟷ }r r1 2 indicates the terms obtained by interchanging r1 and r2, which are necessary to ensure the
symmetry (11) of the covariance tensor. The third-order term Ä( ) ¯ ( )t tC r r u r, , ,1 2 1 is defined as inCartesian
coordinates

Ä =[ ( ) ¯ ( )] ( ) ¯ ( ) ( )t t C t u tC r r u r r r r, , , , , , , 15p q i p q i1 2 1 , , , 1 2 1

and its divergence by

 Ä =
¶
¶

{ · [ ( ) ¯ ( )]} [ ¯ ] ( )t t
r

C uC r r u r, , , . 16p q
i

p q ir 1 2 1 ,
1

,1

Theflux Ä( ) ¯ ( )t tC r r u r, , ,1 2 1 represents the transport of spatial eddy correlations by themeanflow at r1. The
term-  Y( ) · [ ¯ ( )]t tC r r r, , ,u

1 2 2
T represents generation of covariance ( )tC r r, ,1 2 by advection downmean-

flow gradients.
Additionally, continuity (1b) implies that

 =  =· ( ) · ( ) ( )t tC r r C r r, , , , 0. 17u u
r r1 2 2 12 1

The set of equations for thefirst and second cumulants in this form is closed because the third cumulants, which
would ordinarily appear in the second cumulant equations owing to the quadratic nonlinearity of the equations
ofmotion, have been discarded. This second-order truncation of the otherwise infinite hierarchy of cumulant
equations is referred to as a second-order CE2. In that CE2 assumes the first and second cumulants suffice to
describe theflow statistics, itmakes a normal approximation to the hierarchy of equations for the flow statistics.

CE2 equations
To summarize, the CE2 equations, with the second cumulant substituted in (9a), are given by

Y Y

Y

¶
¶

+  Ä = -

+ - F +

¯ ( ) · [ ¯ ( ) ¯ ( )] · ( )

¯ ( ) ¯ ( ) ( ) ( )

t

t
t t t

t t t a

r
r u r C r r

L r r F r

,
, , , ,

, , , , 18

u

 =· ¯ ( )bu 0, 18

Y

¶
¶

+  Ä = - Y

+ +  + ¢ Ä ¢ +f

( ) · [ ( ) ¯ ( )] ( )[ ¯ ( )]

( ) ( ) ( ) ( ) { ⟷ } ( )
t

t t t t t

t t c

C r r C r r u r C r r r

LC r r C r r F r t r t r r

, , , , , , , ,

, , , , , , , 18

u
r

r

1 2 1 2 1 1 2 2
T

1 2 1 2 1 2 1 2

1

1

 =  =· ( ) · ( ) ( )t t dC r r C r r, , , , 0. 18u u
r r1 2 2 12 1

This set of equations involves the 16 terms in C and the eight covariances F( )tC r r, ,1 2 and F( )tC r r, ,2 1 . The 16
components of the second cumulant C are prognostic (evoloving according equation (18c)), and the other 8
covariances components involve diagnostic correlations between the pressure potential and each of the other
fields. The 8 corresponding diagnostic Poisson equations are obtained by taking the divergence with respect to r1

or r2 of the equation for ( )tC r r, ,u
1 2 that can be extracted from (18c), and inwhich time tendencies vanish

because of the nondivergence constraint (18d).
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Physical properties
CE2 is a realizable approximation, in the sense that the implied probability distribution functions are positive
(Marston et al 2014). Thefirst cumulant equations (18a), (18b) are unchanged from the fully nonlinear system.
Therefore, first-order invariants (mass andmomentum) are conserved by theCE2 system in the absence of
nonconservative effects. The third cumulants, which are neglected in the second cumulant equations (18c),
(18d), redistribute second-order invariants (e.g., energy) among scales but do not generate or dissipate these
invariants. Therefore, second-order invariants such as energy are likewise conserved by theCE2 system in the
absence of nonconservative effects (seeMarston et al 2014).

2.4.QL approximation
TheCE2 equations can also be obtained by directly approximating the original equations ofmotion (3), making
what has come to be called theQL approximation (O’Gorman and Schneider 2007, Srinivasan andYoung 2012,
Constantinou et al 2014b, Ait-Chaalal and Schneider 2015). TheQL approximation keeps nonlinear terms in the
equation (9) for themean Ȳ. However it linearizes the equation for the eddies Y¢, obtained by substracting (9a)
from (3a),

Y Y Y Y Y Y¶ ¢

¶
+  Ä ¢ +  ¢ Ä +  ¢ Ä ¢ -  ¢ Ä ¢ = ¢ - F + ¢· ( ¯ ) · ( ¯ ) [ · ( ) · ( )] ( )

t
u u u u L F , 19

by setting

Y Y ¢ Ä ¢ =  ¢ Ä ¢· ( ) · ( ) ( )u u . 20

Hence, theQL approximation amounts to replacing in the Reynolds decomposition of the nonlinear term

Y Y Y Y YÄ = Ä + Ä ¢ + ¢ Ä + ¢ Ä ¢¯ ¯ ¯ ¯ ( )u u u u u , 21

the eddy–eddy interactionY¢ Ä ¢u by itsmean effectY¢ Ä ¢u . Under theQL approximation, the Boussinesq
equations (3) can then bewritten as

Y Y Y Y Y¶
¶

+  Ä +  ¢ Ä ¢ - ¢ Ä ¢ = - F +· ( ) · ( ) ( )
t

au u u L F, 22

 =· ( )bu 0. 22

Because theQL equations retain as the only nonlinear interaction the interaction between eddies andmean
fields, the corresponding cumulant equations are closed at second order,meaning no third-order terms appear
in the second-order equations. Thefirst two cumulant equations are exactly the CE2 equations (18). Thismakes
it possible to simulateflowswhose statistics satisfy the CE2 equations (18) simply by simulating theQL
equations (22).

TheQL truncation does not necessarily imply that eddy–eddy interactions and third-order correlations are
equal to zero.However their evolution is decoupled from that of lower-order cumulants. This has to be kept in
mindwhen interpreting instantaneousfields and statistics offlows simulated by theQL equations.

2.5.Differences betweenCE2 and S3T
S3T is a second-order statistical approach to turbulent flows that is closely related toCE2. CE2 and S3T are
sometimes presented as being equivalent in the literature because they share a similarmathematical formalism.

However, CE2 and S3Tdiffer in that S3T includes a small-scale stochastic forcing that is white in time and
represents the scattering bymissing eddy–eddy interactions. The resulting additional energy injection is
balanced by large-scale linear damping. The stochastic forcing allows one to define rigorously an ensemble
average over its realizations and permits a semi-analytical treatment of the second-order equations, whose
solutions depend on the existence and statistics of the stochastic forcing.

By contrast, CE2 uses the same forcing in the truncated equations as in the fully nonlinear equations, without
attempting to parameterize eddy–eddy interactions. This choice ismade for two reasons. First, a stochastic noise
is not necessarily a realisticmodel for eddy–eddy interactions because these interactions do not inject energy but
only redistribute it among scales. Second, forcing theflow at small scalesmight appear unnatural for awide
range of planetary flows, which are forced on larger scales. For example, large-scalemotion in Earthʼs
atmosphere is essentially driven by the planetary-scale radiative imbalance between the equator and the poles,
rather than by energy injection at small scales.

Another difference is that S3T is generally applied toflows forwhich the linear operator representing eddy–
meanflow interactions does not have unstablemodes (themathematical development of S3T relies on non-
normal growth and decay of stablemodes, excited by the stochastic noise). In this framework, S3T has been used
in barotropic rotating flows to study instabilities of zonalflows (Bakas and Ioannou 2013, Parker and
Krommes 2014) and the dynamics of zonal (Farrell and Ioannou 2003, 2007, Constantinou et al 2014a) and
nonzonal (Bakas and Ioannou 2014) coherent structures. Nevertheless, the simulation of unstable flows at
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second order is possible andwell-definedmathematically. Hence, CE2 (or itsQL analogue) has been applied to
unstable flows in barotropic (Marston et al 2008) and baroclinic (O’Gorman and Schneider 2007, Ait-Chaalal
and Schneider 2015) settings. Evaluating the ability of CE2 in capturing unstable flows is at the cornerstone of
the present paper.

3.Dry convective boundary layer

The dynamics of boundary layers and clouds involve flow scales of ordermeters to a few kilometers. In addition,
condensate formation and evaporation take place atmicroscales. By contrast, typical climatemodels have a
horizontal resolution of order 100 km. Therefore, the dynamics of boundary layers and clouds are subgrid-scale
(SGS) processes in climatemodels, whichmust be represented parametrically in terms of the resolved large-scale
dynamics (e.g., Beljaars 1992, Smith 1997). Uncertainties about these parameterization schemes are the
dominant contributor to uncertainties in climate change projections (e.g., Stephens 2005, Bony et al 2006, Soden
andHeld 2006, Stevens andBony 2013,Webb et al 2013, Vial et al 2013, Brient et al 2015).

Most current parameterization schemes for the dynamics of clouds and boundary layers truncate the
hierarchy ofmoment (or cumulant) equations atfirst order and represent the second-order SGS fluxes
appearing in the first-order equations semi-empirically. For example, turbulent fluxes in boundary layers are
often represented as diffusive fluxes downmean gradients, with diffusivities estimated from approximate
spatially local second-order equations for turbulence kinetic energy (TKE) (e.g.,Mellor andYamada 1982,
Beljaars 1992). Turbulentfluxes in convective clouds, on the other hand, are often represented as vertically
nonlocal entraining plumes that extend deep into the boundary layer. The parameters determining themass
fluxes in the plumes are estimated from energy equations (e.g., Arakawa and Schubert 1974, Gregory 1997).

CE2may offer a path toward improved and unified representations of SGS turbulent fluxes (e.g. in boundary
layers and in convective clouds) in climatemodels, because CE2 explicitly retains spatial nonlocality and
interactions between fluctuations (plumes or eddies) and the environment (meanfield). Herewe compare aQL
simulation and a fully nonlinear simulation of the simplest convective boundary layer, a dry convective
boundary layer, and demonstrate the potential and limitations of CE2 to represent the statistics of its dynamics.
We conducted a large-eddy simulation (LES) of a dry convective boundary layer growing into a stable
background stratification as a heatflux is imposed at the surface (Soares 2004).We then compared this fully
nonlinear simulationwith a simulation inwhich the equationswere replaced by the correspondingQL
equations (22).

3.1. Large-eddy simulations
Setup
The LES code solves the anelastic equations and is described in Pressel et al (2015). Like the Boussinesq
approximation, the anelastic equations are nonhydrostatic and filter soundwaves by neglecting dynamic density
variations except where they affect buoyancy. But in contrast to the Boussinesq approximation, the background
state depends on the vertical coordinate. Hence, the anelastic equations can capture the dynamics offlowswith
substantial stratification and so are better suited to study atmospheric convection. The anelastic approximation
and its CE2 are described in appendix A.

Our anelastic LES code uses the specific entropy s and the three-dimensional velocityfield u as prognostic
variables (Pauluis 2008).We use a second-order central difference spatial discretization schemewith strongly
stability preserving Runge–Kutta time-stepping (Spiteri andRuuth 2002). The time step is dynamically adjusted
to ensure aCourant number near 0.3. Because LESmerely resolves themost energetic scales of theflow, SGS
motionsmust also bemodeled, andwe do so by applying a constant eddy diffusivity of n = -1.2 m s2 1

throughout the domain.We choose a constant diffusivity to avoid the nonlinearities that appear in the
computation of the eddy viscosity bymore advanced SGS schemes such as the Smagorinsky–Lilly closure
(Lilly 1962, Smagorinsky 1963), whichwould need to be linearized in aQL simulation; constant diffusion as an
SGS closure allows amore direct comparison of fully nonlinear andQL simulations, notwithstanding that it is an
inferior SGS closure. The domain extends ´6.4 km 6.4 km in the horizontal and 3.75 km in the vertical, with a
horizontal and vertical resolution of 25 m. Horizontal boundary conditions are doubly periodic. At the upper
boundary,flowfields are linearly relaxed over a 800 m deep layer toward the horizontalmean flow,which is
almostmotionless (horizontalmean velocities are of the order -0.1 m s 1). The relaxation coefficient varies from
t = 0 at the bottomof the layer to t = -( )100 s 1 at the top.
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The initial state is stably stratifiedwith a potential temperature θ that increases linearly with height, at a rate
of -2 K km 1. Here, the potential temperature is related to the specific entropy by q = -˜ [( ˜) ]T s s cexp p , where

cp is the specific heat at constant pressure, T̃ is a standard temperature, and s̃ is a standard specific entropy at the
standard temperature T̃ and standard pressure4 =p̃ 1000 hPa. The initial state is destabilized by imposing a
constant sensible heat (enthalpy)flux of -70.46 Wm 2 at the lower boundary.Normally distributed random
fluctuations of the potential temperaturewith amplitude 0.1 K in the lowest 200 m break the horizontal
homogeneity of the initial state and allow the generation of turbulentmotions. The initialflow is uniform,
horizontal, and has a speed of -0.01 m s 1. Together with the drag at the lower boundary, this allows for turbulent
momentumfluxes to develop (Soares 2004).We ran simulations for up to 12 simulated hours, over which a dry
convective boundary layer forms and grows as a result of the heating at the bottom.

Because of the statistical horizontal homogeneity of theflow,we use the horizontal average to definemean
fields and eddies, as in equation (6). TheQL truncation (22), here with the state vectorY = ( )u v w s, , , T, is
implemented by removing at every time step the nonlinear eddy–eddy interactions from the tendencies of all
prognostic variables5. Herring (1963) similarly used theQL approximation to study thermal convection between
two parallel horizontal plates.

3.2. Results
Figure 1 compares vertical and horizontal cross sections of the vertical velocity field in the fully nonlinear and in
theQL simulations. The vertical cross sections (figures 1(a), (b)) show that upwardmotionmainly occurs in
vertically coherent updrafts, as is well known (e.g., Schmidt and Schumann 1989). In theQL simulation,
updrafts aremore coherent because small-scale structures aremissingwhile the larger scales are well
represented. The horizontal cross section in the fully nonlinear simulation reveals that the updrafts are

Figure 1. Instantaneous cross sections of the vertical velocity after 4 h. Vertical cross sections in (a) fully nonlinear simulation and (b)
QL simulation.Horizontal cross sections at 250maltitude in (c) fully nonlinear simulation and (d)QL simulation.Note the different
color scales for the fully nonlinear andQL simulation.

4
Using the ideal-gas law, it can be verified that θ is the usual potential temperature with reference pressure p̃ : q = ( ˜ )T p p R c

0
p, with

specific gas constantR. However, this potential temperature is evaluated at the anelastic reference-state pressure ( )p z0 rather than at the
in situ pressure p, as is required for thermodynamic consistency of the anelastic approximation (Pauluis 2008).
5
TheQL truncation (22) is valid for the Boussinesq approximation. The anelastic approximation requires us to use an averageweighted by

the background density, as explained in appendix A. But because averages are here performed on horizontal surfaces with constant
background density, theQL approximation for the anelastic system is also given by (22).
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organized into polygonal convective cells (figure 1(c)). Such cellular patterns arewell known to arise near the
onset of thermal instability of a fluid heated frombelow (Chandrasekhar 1961, chapter2). TheQL simulation
does not capture these horizontal correlation patterns (figure 1(d)), probably because eddy–eddy interactions in
the horizontal plane play a role in generating the smaller scales of the cellular patterns. The vertical velocity
fluctuations ¢w are distributedmore symmetrically around zero in theQL simulation: updrafts and downdrafts
are of similar size and strength (figures 1(b), (d)). This stands in contrast to the fully nonlinear simulations, in
which updrafts are faster and narrower and downdrafts slower and broader.

Figure 2(a) shows the evolution of the vertical profile of the potential temperature in the full andQL
simulations. Because of the constant heating at the lower boundary and the absence of any thermal relaxation in
thefluid interior, the boundary layer continually deepens and does not reach a statistically steady state
(figure 2(a)). The boundary layer is wellmixedwith homogenized potential temperature below its top. This
indicates that the BL is close to the critical state for thermal instability. TheQL simulation captures quite
accurately the growth rate of the boundary layer and themixing of potential temperature below its top. This is
because the growth of the boundary layermainly arises through interactions offluctuationswith themean flow,
which are retained in theQL simulation.

Above the top of the boundary layer, defined as the altitude belowwhich potential temperature is wellmixed,
theQL and the fully nonlinear simulations exhibit important differences. In theQL simulation, themean
potential temperature profile is identical to the initial profile. By contrast, the fully nonlinear simulation shows a
layer of strong stability associatedwith convective overshoots of thermal updrafts into the free atmosphere and
the downward entrainment of warmer free-atmospheric air into the boundary layer (e.g., de Roode et al 2004).
These overshoots aremissing in theQL simulation, as they are infirst-order diffusive closure schemes for
convective boundary layers (e.g., Stull 1988). The difference at the top of the boundary layer is emphasized in the
profile of temperature variance (figure 2(b)), which shows a strong peak above the top of the boundary layer for
the fully nonlinear simulation but vanishing variance throughout themixed layer and aloft for theQL
simulation. Near the surface, themean potential temperature is reduced in theQL simulation, which reflects a
more efficient upward transport of heat into the interior of the boundary layer. This probably can be ascribed to
themore intense vertical velocities and the strengthened correlations between buoyancy and vertical velocity
fluctuations in themore coherent updrafts of theQLflow.

An inability of diffusive closures and theQL simulation to represent the turbulent transport of turbulence
kinetic energy (TKE) lies behind the failure of theQL simulation and diffusive closures to represent convective

overshoots.We take TKE to be the kinetic energy of the resolved scales of the LES: = ¢ + ¢ + ¢( )e u v w0.5
2 2 2

. Its
mean budget is derived from themomentum equations and reads
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Figure 2. (a)Vertical profiles of potential temperature at indicated times in the fully nonlinear (solid lines) andQL (dashed lines)

simulations. (b)Corresponding vertical profiles of the potential temperature variance q¢2.
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The right-hand side contains all terms that generate, destroy, or redistribute TKE: advection by themeanflow
and the eddies  , shear production  , buoyancy production  ( q q¢ = ¢b g 0 denotes buoyancy fluctuations),
the pressure correlation term  and dissipation ò. The dissipation ò denotes the energy flux from the resolved
scales to sub-grid scales, which in our case is parameterized as viscous dissipation of the resolved fields with
constant eddy viscosity ν. All but the turbulent transport term  r r= - ¶ ¢( )w e1 z0 0 are of second order in
fluctuations and hence are retained in aQL truncation.

The TKE budgets for the fully nonlinear andQL simulations are shown infigure 3. The dominance of the
buoyancy production term relative to the shear production term in both plots indicates that the flow is thermally
driven. In the fully nonlinear simulation, buoyancy production is positive throughout thewell-mixed part of the
boundary layer (i.e., upward buoyancy flux), zero at the top of the boundary layer, and negative aloft (i.e.,
downward buoyancy flux). The negative flux is related to the overshooting thermals, which trigger a downward
entrainment flux of free atmospheric air into the boundary layer. This negative flux ismissing in theQL
simulation, inwhich the buoyancy flux is zero above the top of the boundary layer.However, the buoyancy flux
is well captured in the interior of the boundary layer.

The triple correlation transport term  represents the vertical transport of TKE by eddies. In the fully
nonlinear simulation, eddies transport TKE from lower levels with highTKE to higher levels with lowTKE. This
transport seems to be crucial for the growth of TKE in the upper part of the boundary layer and especially across
the top of the boundary layer. The neglect of this term in theQLdynamics is responsible for themissing
overshoots of thermals across the boundary layer top and themissing associated negative buoyancy flux. The
transport term  can be evaluated in theQL simulations and actually is nonzero. However, it decouples from
the second-order dynamics and so does not affect the TKEbudget.

3.3. Implications
These results show that aQL simulation can capture important aspects of the evolution of a dry convective
boundary layer, such as its well-mixed nature and its growth over time. They suggest that a corresponding CE2
closurewould also capture the relevantfirst-order statistics and, therefore, has promise as a nonlocal second-
order closure in climatemodels. Deficiencies such as themissing convective overshoots at the top of the
boundary layermay be remedied, for example, by adding a linear, diffusive transport term in the prognostic
equations of the second-ordermoments (e.g.Mellor 1973). The resulting parameterization schemewould solve
directly for the 1st- and 2nd-order statistics in every grid box of the large-scalemodel.

The applicability of such a scheme depends onwhether the correspondingCE2 equations can be solved
efficiently—muchmore efficiently than an explicit QL simulation can be run. This will require a simplified
representation of horizontal covariances, for example, by assuming approximate statistical symmetries such as
horizontal homogeneity and isotropy offluctuations. But the important nonlocal effects of vertical covariances
need to be retained.

The eddy–eddy interactions neglected in theQL simulationsmay be evenmore critical formoist convection
than they are for the dry convective boundary layer (Firl andRandall 2015). Hence,more sophisticated
approachesmay be needed to expand the field of application of CE2 closure schemes tomoist boundary layer

Figure 3.Turbulence kinetic energy budget of the fully nonlinear (a) andQL simulations (b). The different terms denote the TKE
advection , TKE transport by eddies  , shear production  , buoyancy production  , pressure correlation term  , dissipation to
subgrid-scales  and rate of change of TKE. Also shown are the residuals, which are of the same order as the SGS diffusion term in
the fully nonlinear simulation (seeHeinze et al 2015) but are smaller in theQL simulation, likely because the latter is smoother, thus
limiting numerical diffusion.
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dynamics. Exploring towhat degree theCE2 approximation and its extensions can capture the dynamics of
clouds andmoist boundary layers promises to be a fruitful area of study.

4. Large-scale eddy decay on the rotating sphere

While the preceding example concerned the applicability of CE2 to atmospheric dynamics on scales ofmeters to
kilometers, we now turn to a prototype problem for atmospheric dynamics on scales of hundreds to thousands
of kilometers. Eddies on such large scales are essentially thewell-knownweather systems. They are generated by
baroclinic instability and are fundamental formaintaining Earthʼs climate because they are responsible for the
bulk of the atmospheric transport of energy, water vapor, and angularmomentum. Through these transports,
they shape the distribution of temperature, precipitation, andwinds at the surface (Peixoto andOort 1992). The
fundamental balances governing such large-scale eddies are different than those in the boundary layer. The
Coriolis force due to the planetary rotation and the average stable stratification become of primary importance,
leading toflows that aremore two-dimensional in character than boundary-layerflows. A two-dimensional
(latitude-longitude)model suffices to illustrate some of the issues one encounters if onewants to develop a
closure for the large-scale dynamics of the atmosphere based onCE2s.

4.1. Barotropicmodel for the upper troposphere
Large-scale eddies in Earthʼs atmosphere are generated near the surface inmidlatitudes, propagate upward
through the troposphere, and propagatemeridionally in the upper troposphere (Simmons andHoskins 1978,
Edmon et al 1980,Held andHoskins 1985, Thorncroft et al 1993). Theirmeridional transport and eventual
dissipation bywave breaking in latitude bands away from their generation latitudes is what gives rise to their
meridional angularmomentum transport: large-scale eddies in rapidly rotating atmospheres transport angular
momentum from their dissipation latitudes into their generation latitudes, that is, in the opposite direction to
theirmeridional propagation (Kuo 1951,Held 1975, 1999). This angularmomentum transport ultimately
shapes the strength and distribution of surfacewinds, with easterlies in the tropics, westerlies inmidlatitudes,
andweak easterlies again in polar latitudes (see Schneider 2006, for a review). To understand the strength and
distribution of surface winds, it is therefore necessary to understand themeridional propagation and dissipation
of large-scale eddies, which are concentrated in the upper troposphere (Ait-Chaalal and Schneider 2015). The
simplestmodel that captures these processes is the barotropicmodel—amodel of a two-dimensional fluid layer
on a sphere, thought to represent a layer in the upper troposphere (e.g., Held and Phillips 1987).

Equations ofmotion
The equations governing barotropic flow can be derived from the Boussinesq equations (1). Consider a
Boussinesqflowon a sphere of radius a rotating at constant spin angular velocityW.We further assume that the
flow is two-dimensional on the sphere: =·u e 0r , with er being the radial coordinate. In that case, the
momentum and continuity equations (1a), (1b) reduce to

W¶
¶

+  + ´ = -F +· ( )
t

a
v

v v v2 , 24v

 =· ( )bv 0. 24

The horizontal components of thewind and of the forcing are denoted v and v. Because theflow v is two-
dimensional on the sphere, only the local vertical component fW esin r (latitudef) ofW yields nonzero terms
in (24a). Taking the curl of themomentum equation and projecting it onto the radial direction er yields the two-
dimensional barotropic vorticity equation


¶
¶

+  =  ´· ( ) · ( )q

t
qv e . 25rv

Theflow is entirely described by this equation for the absolute vorticity

z= + ( )q f , 26

where theCoriolis parameter f f= W( )f 2 sin represents the vorticity of solid body rotation, and
z =  ´( ) ·v er is the relative vorticity in the radial direction er , relative to the rotating reference frame. The
advection term · qv contains the advection of planetary vorticity b =· f vv , with
b f= ¶ = Wf

- -a f a2 cos1 1 , which arises from the curl of the Coriolis force. This term is commonly referred to
as theβ-term. The vorticity equation (25) contains the entire dynamics of the flowbecause an incompressible
two-dimensional flow is described by a streamfunctionψ, defined such that

y=  ´ ( ) ( )av e , 27r
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z y=  ( )b. 272

That is, if the relative vorticity ζ is known, the advecting velocity (27a) can be determined from the
streamfunction, which is the solution of a Poisson equation (27b). Thus, the equations ofmotion (25) and (27),
supplemented by appropriate boundary conditions, specify the dynamics completely.

The equations ofmotion (25)–(27) can be nondimensionalized using the planetary radius a as the typical
length scale and the length of the day pW-2 1 as the typical time scale.With that nondimensionalization, the
operators , ´and 2 become operators on the unit sphere, and the angular velocityΩ becomes p2 .
Throughout the rest of the paper, wewill use there nondimensionalized quantities, unless otherwise specified.

Eddy-mean flow decomposition
Weconsider situations inwhich the boundary conditions of the problem are statistically symmetric under
rotations around the planetʼs spin axis, so that the flow statistics (but not the instantaneous flow itself) can be
expected to be axisymmetric. A zonal average (·) then suggests itself. Decomposing flowfields in the
nondimensional barotropic vorticity equation into zonalmeans (·) and eddies ¢ = -(·) (·) (·) yields themean
and eddy vorticity equations

z
y z
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Here b f= W2 cos , with pW = 2 , is the nondimensionalmeridional derivative of theCoriolis parameter, and
the Jacobian
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represents the advection on the unit sphere of vorticity ζ by the zonal (u) andmeridional (v)flow implied by the
streamfunctionψ:

y
f f

y
l

= -
¶
¶

=
¶
¶

( )u v,
1

cos
. 30

The streamfunction-vorticity relations are

z y=  ¯ ( )a, 31n
2

z y¢ =  ¢ ( )b, 31n
2

with n likewise defined on the unit sphere.
Equation (28) is essentially (19) for the 2Dbarotropic vorticity equation. Themean flow evolves in time due

to vorticityfluxes y z- ¢ ¢( )J ,n . The eddy vorticity budget involves shear by themeanflow f z¶ ¢lū cos , eddy–

eddy interactions y z y z¢ ¢ - ¢ ¢[ ( ) ( )]J J, ,n n , theβ-term b ¢v and the advection ofmean-flow vorticity z¶ ¢f ¯v .

Cumulants
Thefirst cumulant is themean vorticity z f¯ ( )t, , and the second cumulant is the vorticity equal-time two-point
correlation:

z z f=¯ ( ) ¯ ( ) ( )t t ar, , , 32

z z f f l l= ¢ ¢ = -( ) ( ) ( ) ( ) ( )c t t t C t br r r r, , , , , , , . 321 2 1 2 1 2 1 2

Thefirst cumulant depends on the latitudef, and the second cumulant depends on the latitudes f1 and f2 and,
because of the statistical axisymmetry of the equations, on the longitude difference l l-1 2 (Marston et al 2008).
Because theflow is entirely determined by the scalar q (or ζ), all other correlations are determined by the scalar
cumulant c. Hence,moments like z ¢ Ä ¢( ) ( )t tr u r, ,1 2 or ¢ Ä ¢( ) ( )t tu r u r, ,1 2 can be calculated from z̄ and c
(e.g.,Marston et al 2008, Srinivasan andYoung 2012,Marston et al 2014).

TheCE2 equations for this problem are given inMarston et al (2008, 2014). They are of the form (18a) and
(18c), with vorticity fluxes appearing as the essential eddy termsThe equivalent QL system is (28)where the
eddy–eddy interactions are neglected.

Numerical implementation
We simulate a barotropic flowon a sphere, specified by the equations ofmotion (25) and (27) on a spherical
geodesic grid (Heikes andRandall 1995a, 1995b,Qi andMarston 2014)with163, 842 cells. To remove
enstrophy that cascades to the smallest scales, hyperviscous dissipation n z + ( )22 6 is included, where the
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term  +( )22 ensures that angularmomentum is conserved. The hyperviscosity coefficient ν is chosen such
that the smallest resolvedmode decays with an e-folding time of 5. The vorticity is stepped forward in time by a
second-order leapfrog scheme using theRobert–Asselin–Williamsfilter (Williams 2009). The time step isfixed
atD =t 0.01.

Explicit time integration of the cumulant equations is carried out in spectral space using a 4th-order Runge–
Kutta algorithmwith an adaptive time step.We adopt the spectral truncation  ℓ L0 on spherical
wavenumber ℓ, with the zonal wavenumbers restricted to  ℓ∣ ∣ { }m Mmin , .We choose spectral cutoffs
L=60 andM=30.Hyperviscosity is adjusted to ensure the same e-folding time at themaximumwavenumber
=ℓ L as on the smallest resolved spatial scales on the geodesic grid.
To verify that the spectral cumulant simulation has sufficient resolution and can be compared to the

geodesic gridmodel, a simulation of the fluid is also performed in a pure spectral calculationwith the same
numericalmethods and resolution as for the cumulant equations. The agreement between the spectral and
geodesicmodels is excellent. QL simulations are performed in spectral space by removing the triads that
correspond to the interaction of two eddies, eachwith nonzero zonal wavenumber.

A program that implements fully nonlinear simulations on the spherical geodesic grid, and the nonlinear,
QL, andCE2 simulations in spectral space, is freely available6.More details about the simulations andCE2 can
be found inMarston et al (2014).

4.2. Eddy lifecycle simulations
Setup
To illustrate situationswhenCE2 andQL approaches succeed or fail at capturing barotropic flowdynamics, we
simulate the evolution of an initial zonalflow f( )U with a superimposed initial disturbance (eddy)with
vorticity z f l( ),i . The zonal flowU and disturbance zi mimic the upper-tropospheric jet stream and
disturbances thatmay originate, for example, from lower-tropospheric baroclinic instability. The setup is
inspired byHeld and Phillips (1987) and uses

f f f f f f= - + -( ) ( )U A B C D acos cos sin cos cos , 332 2 4 6

z f l z f f f d l= - -( ) [ ( ) )] ( ) ( )k b, cos exp cos . 33i m i0
2 2

Tomimic Earthʼs upper troposphere, we choose

= ´ = ´ = = ´- - - ( )A B C D3.4 10 , 4.1 10 , 4.0, and 2.3 10 . 341 1 1

The corresponding dimensionalized flowon a sphere of Earthʼs radius and rotation rate resembles the
midlatitude jet in the upper troposphere. It has amaximumwestward velocity of~ -33 m s 1 at a latitude of
~ 40 and amaximumeastward velocity of~ -22 m s 1 at the equator; its zero is near~ 17 . This zonal flow is
barotropically stable. The eddy vorticity zi decaysmeridionally away from itsmaximumabsolute value z fcos m0
at latitude f p= = 4 45m , with characteristicmeridional decay scale d p= 9. Its zonal wavenumber =k 6i

is close to the dominant zonal wavenumber of transient eddies on Earth (e.g., Boer and Shepherd 1983, Straus
andDitlevsen 1999), which approximately coincides with the baroclinicallymost unstable zonal wavenumber
(e.g., Simmons andHoskins 1976, 1978, Thorncroft et al 1993,Merlis and Schneider 2009).

We let the flow evolve freely without forcing or dissipation, apart fromhyperviscosity, and analyze the time
evolution of themean flow and the eddies.We compareCE2 to the statistics of fully nonlinear simulations for
different choices of parameters. To identify relevant nondimensional parameters controlling the evolution of
theflow and the adequacy of CE2 closures, we rescale themean and eddy vorticity equations (28), using the
relative vorticity 2Ro of the initial zonal flowU. Dimensionally, we have = L W( )Ro 2 , where
L » ( )U a2 max is the typical initial zonal-mean flow vorticity. Hence, Ro is a Rossby numbermeasuring the
meanflow vorticity to the equatorial planetary vorticity W2 .Wemeasure the initialmaximumvorticity z0 of the
eddies relative to themean-flowvorticity 2Ro through the amplitude parameter  z f= cos 2Rom0 . The
quantities z , z ¢, y, y¢, and t are then rescaledwith p4 Ro, p4 Ro, p4 Ro, p4 Ro, and p -( )4 Ro 1, respectively.
The equations ofmotion for themean-flow and the eddies become
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equation (35) gives the relative amplitude of the different terms if we assume that the typical length scales of the
meanflow and eddies are of the order of the radius of the planet. An immediate simplification that results for

6
The application ‘GCM’ is available forOSX10.9 and higher on theAppleMacApp Store at http://appstore.com/mac/gcm.
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small Rossby number Ro (the case wewill consider) is that the advection ofmean-flow vorticity z̄ bymeridional
velocityfluctuations is negligible comparedwith theβ-term,which is a factor -Ro 1 larger.

The nondimensional parameters Ro and ò control the vorticity of themean flow and of the eddies and are
important for the evolution of the barotropic flow. Eddy–meanflow interactions are of order Ro, and eddy–
eddy interactions of order Ro, provided n

2 is of order one. This is the case initially; however, it does not remain
true over the evolution of the flow, as small scales are generated. The two parameters Ro and ò can be varied
independently in our setup. Inwhat follows, we explore how these parameters affect the flow evolution and the
adequacy of CE2 andQL approaches in capturing it.

4.3. Results
Varying eddy amplitudes
For afixed initialmean-flowRossby number »Ro 0.06 (corresponding to the Earth-like parameters in
equation (34)), we run eddy lifecycle experiments for larger-amplitude initial eddies with  » 6, and for smaller-
amplitude initial eddies with  » 2. The expectation is that CE2 andQL approaches aremore successful for the
smaller-amplitude eddies, for which the nonlinear eddy–eddy interactions (of order Ro) areweaker, and this is
indeed borne out in the simulations. It is instructive to see inwhat way they fail to capture aspects of theflow
evolution for the larger-amplitude eddies.

For the larger-amplitude eddies, figure 4 shows the relative vorticity ζ at 5 instants during the evolution of
theflow. It is evident that the initial disturbance quickly becomes nonlinear and develops drawn-out filaments
on the equatorwardflank of the zonal jet. Thefilaments roll-up anticyclonically within cats’ eyes structures
(marked byXʼs infigure 4) that continue to have the initial zonal wavenumber =k 6i . Such cats’ eyes are
characteristic of Rossbywaves that break in ‘surf zones’ around their critical layers7 (Stewartson 1977,Warn and
Warn 1978,McIntyre and Palmer 1983, Killworth andMcIntyre 1985,Held and Phillips 1987).

As the eddies break and eventually dissipate in the surf zone, they are absorbed by themean flow, and their

kinetic energy decays. The total eddy kinetic ò f f=
f

E e0.5 cos dK K , where = ¢ + ¢( )e u v0.5K
2 2

, becomes

very small at large times (30, see figure 5(a)). At those times,most of the initial kinetic energy has been
transferred to themean zonalflow. The local zonal kinetic energy =e u0.5Z

2 ( yº -¶f¯ ¯u of themean zonal
flow increases in the core of themidlatitude jet, roughly in proportion to the decrease of the eddy kinetic energy

eK (figure 5(c)). Total energy +E EZK , with ò f f=
f

E e0.5 cos dZ Z , is approximately conserved in themodel,

up to very small losses (~0.2% of the total after a time of 50) through SGS dissipation. That is, although

Figure 4.Evolution of relative vorticity in the fully nonlinear simulation for the larger-amplitude eddies ( = 6) for an Earth-like
setting ( =Ro 0.06). The relative vorticitymaps show the formation of cats’ eyes, with vorticity filaments rolling upwithin them.
White Xʼsmark the centers of some cats’ eyes. Time scales are nondimensionalized with the length of the day pW-2 1.

7
Figure 4(e) shows some spurious oscillations in the critical layer region. This is the consequence of a tooweak hyperdiffusion.With

hyperdiffusion strong enough to remove the ripples, we observed have noticable hyperdiffusive wave absorption over the time scales
considered. This obscures thewave absorption due to eddy–eddy interactions and blurs the differences between fully nonlinear andCE2
simulations. Removing the spurious ripples while showing sharp differences between fully nonlinear andCE2 simulations would have
required amuch higher resolution, or perhaps a different numerical advection scheme.
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dissipation at small scales in the surf zone is essential to generate irreversibility, the kinetic energy loss associated
with it is small compared to the transfer to themeanflow.

The transfer of EK toEZ implies acceleration of themean zonal jet. This acceleration occurs through transfer
ofmomentum from the eddies to themeanflow, as can be seen from the nondimensionalized zonally averaged
momentum equation (24a) in the inviscid limit ( = 0v ):

f
f f

f
¶
¶

= -
¶
¶

¢ ¢¯ [ ] ( )u

t
u vcos

1

cos
cos . 362

Acceleration of themean zonal flowoccurswhere eddymomentumfluxes f¢ ¢u v cos converge.Multiplying the
mean zonalmomentum equation (36) by ū and integrating by parts yields the equation for the zonal kinetic
energyEZ,

⎛
⎝⎜

⎞
⎠⎟ò f

f f
f= ¢ ¢ ¶

¶
= -

f

¯ ( )
t

E u v
u

t
E

d

d
cos

cos
d

d

d
, 37Z

2
K

where the right-hand side is obtained from a corresponding integral of the eddymomentum equations. This
shows that transfer of kinetic energy from the eddies to themeanflowoccurs through eddymomentum fluxes
that are up the gradient of angular velocity f-ū cos 1 . The acceleration of themean zonal jet at its core
(figure 5(c)) thus is associatedwith eddymomentumflux convergence f¶ ¢ ¢f ( )u v cos (EMFC, see figure 5(e)).

However, the eddy kinetic energy does not decaymonotonically. Instead, it exhibits damped oscillations
duringwhich eddymomentumfluxes cause zonal angularmomentum to slosh back and forthmeridionally
within the jet (figure 5(e)). The alternating poleward and equatorwardmomentum fluxes (with decreasing
amplitude) on the equatorward flank of the jet are result of nonlinear processes within the surf zone. These
processes have been described in an idealized analyticalmodel of Rossby-wave breaking in critical layers, the
Stewartson–Warn–Warn (SWW) theory (Stewartson 1977,Warn andWarn 1978; see also Killworth and
McIntyre 1985). The oscillation on the poleward flank of the jetmay bemore linear, originating from the
reflection of Rossbywavepackets from reflecting levels that arise becauseβ decreases with latitude (e.g.,
Lorenz 2014).

Figure 5.Evolution of kinetic energy and eddymomentum flux convergence (EMFC) in the fully nonlinear simulation (left column)
and in a direct CE2 calculation of the statistics (right column) for an Earth-like setting ( =Ro 0.06) and for the larger-amplitude
eddies ( = 6). (a), (d)Eddy kinetic energy eK. (b), (e)Zonal kinetic energy eZ. (c), (f)EMFC. Vertical blue dashed lines indicate at
which times relative vorticity snapshots are shown infigure 4. Time scales and length scales are nondimensionalizedwith the length of
the day pW-2 1 and the planet radius a.
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Figure 5 (right column) shows the kinetic energies and EMFCobtained from a direct calculation of these
statistics withCE2. CE2 captures the oscillation of kinetic energy between eddies and themean zonalflow,with a
period similar to the fully nonlinear simulation (figures 5(a), (b)). However, the oscillations are tooweakly
damped; large eddy kinetic energies eK persist for a long time. The eddy absorption in the surf zone is not
adequately captured byCE2 because CE2 cannot resolve the generation of small scales in the surf zone through
eddy–eddy interactions. Consistently, unrealistically strong oscillations persist in the EMFCunderCE2
(figure 5(f)). How these oscillations arise from the perspective of wavemechanics, andwhyCE2 cannot capture
thewave absorption in this case, is illustrated in appendix B in aQL simulation that corresponds to theCE2
calculations shownhere. The phenomenology of such oscillations has been described analytically byHaynes and
McIntyre (1987) in the context of aQL truncation of the SWWmodel.

Eddy–eddy interactions are weaker andCE2 ismore successful in capturing the flowdynamics when the
amplitude of the initial perturbation is decreased by a factor 3 ( » 2). Cats’ eyeswith rolling-up vorticity
filaments do not develop in the fully nonlinear simulation (figure 6). Instead, eddies are sheared by themean
flow,which transfers eddy kinetic energy eK to themean flow through theOrrmechanism, which is onlyweakly
nonlinear because it involves the interaction of disturbances with the slowly varyingmeanflow (e.g.
Thomson 1887,Orr 1907, Farrell 1987, Bouchet et al 2013). The transfer of eddy kinetic energy to themean flow
occurs over time scales of a couple days, corresponding to the shear time scale of themean zonalflow (figure 7).
The damped oscillatory behavior seen in the larger-amplitude simulation disappears. Because eddy absorption
results from themeanflow shearing the eddies—an eddy-mean flow interaction that is captured byCE2—
statistics calculated directly withCE2 come in very close agreement with those from the fully nonlinear
simulation (figure 7, right column). As in the nonlinear case, eddy absorption occurs through the formation of
small-scale vorticity filaments. But instead of rolling up inside catʼs eyes, here they stretch around the planet.

It is worth noting that eddies are also sheared equatorward of the cats’ eyes in the larger-amplitude
simulation (figure 4). Hence, weakly nonlinear eddy absorption also occurs in this simulation, but it is not the
dominant effect responsible for eddy absorption.

Relative amplitude of terms in the potential vorticity budget
For the larger-amplitude experiment, the evident importance of the development of small scales through eddy–
eddy interactions seems consistent with the order ofmagnitude of the terms in the vorticity equations (35). The
eddy–eddy interactions appear of order  »Ro 0.4, comparedwith theβ-termwhich is responsible for Rossby
wave dynamics and is of order 1.Hence, the eddy–eddy interactions are not negligible comparedwith Rossby
wave dynamics. By contrast, the interactions of the disturbance with themeanflow shear are of order »Ro 0.06
and hence aremuchweaker.

For the smaller-amplitude experiment, the dimensional analysis of the vorticity equations (35) suggests that
the eddy–eddy interactions now are of order  Ro 0.2 comparedwith theβ-term.Hence, the eddy–eddy
interactions become close to being negligible comparedwith Rossbywave dynamics, consistent with the

Figure 6.Evolution of relative vorticity in the fully nonlinear simulation for the smaller-amplitude eddies ( = 2) for an Earth-like
setting ( =Ro 0.06). Time scales are nondimensionalized with the length of the day pW-2 1.

16

New J. Phys. 18 (2016) 025019 FAit-Chaalal et al



simulation results. However, the dimensional analysis also suggests that interactions of the disturbance with the
meanflow shear still are of order »Ro 0.06 and hence are weaker still, albeit of the same order ofmagnitude as
the eddy–eddy interactions. Yet the eddy–eddy interactions are inhibited in the fully nonlinear simulation,
whereas the shear interactions dominate the eddy absorption, illustrating the limits of dimensional analysis in
this nonlinear problem.

Equation (35) is useful to determinewhich parameter to vary.Nevertheless, one has to be careful when
interpreting the relative amplitude of the different termsA small term can be fundamental for the dynamics. For
example, the SWWtheory has shown that eddy–eddy interactions, albeit weak, can determine at leading order
momentumfluxes because they dominate the vorticity budget in a thin critical layer, where linear theory breaks
down. This remains true in the limit where the relative amplitude of the eddy–eddy interactions goes to zero.
Moreover, the relative amplitude of the terms in the vorticity budget evolves with time as small scales develop.

Varying Rossby numbers
To illustrate how variations of themean-flowRossby number affect the evolution of disturbances, we use larger-
amplitude eddies ( » 6) and decrease the Rossby number Ro from0.06 to 0.02. Dimensionally, this is
equivalent toweakening the initial flowwhile keeping the rotation rate of the planet constant, or to increasing
the rotation rate while keeping the initialflow constant. Based on the dimensional analysis of the vorticity
equations (35), this reduction of the Rossby number should decrease the relativemagnitude both of eddy–eddy
interactions and of shearing of eddies by themeanflow relative to theβ-term,maintaining the relative amplitude
of the eddy–eddy interactions to theβ-term.

Figure 8 compares the time evolution of the eddy kinetic energy eK in the fully nonlinear and theCE2
simulations. Aswe have already seen, eddy absorption at =Ro 0.06 is not captured byCE2 because it is strongly
nonlinear. However, at the smaller Rossby number =Ro 0.02, it is faithfully captured byCE2. Indeed, eddy
absorption appearsmoreweakly nonlinear for =Ro 0.02, and dominated bymean-flow shearing, as is evident
on the relative vorticitymaps (figure 9). Vorticitymaps for =Ro 0.04 and =Ro 0.03 show the transition from
weakly to strongly nonlinear absorption: themeridional extent of the nonlinear surf zone decreases with
increasing rotation, while shearing effects becomemore important (figure 9). Because CE2 can capture the
weakly nonlinear shearing interactions but not the strongly nonlinear eddy–eddy interactions in the surf zone, it
becomes graduallymore adequate as the rotation rate increases (figure 8). This occurs although the orders of
magnitude of the relevant terms suggested by the dimensional analysis decrease by equal factors of order Ro as
themean-flowRossby number decreases. It appears thatwhat is important here is that themagnitude of the
advection of absolute vorticity, and hence of linear Rossbywave dynamics, increases relative to both of these
terms. For =Ro 0.02, shear explains eddy decay and jet acceleration, even though the nondimensionalization
(35) suggests shear should bemuch smaller than eddy–eddy interactions.

Figure 7.Evolution of kinetic energy and eddymomentum flux convergence (EMFC) in the fully nonlinear simulation (left column)
and in a direct CE2 calculation of the statistics (right column) for an Earth-like setting ( =Ro 0.06) and for the larger-amplitude
eddies ( = 2). (a), (d)Eddy kinetic energy eK. (c), (f)EMFC.Vertical blue dashed lines indicate the times corresponding to relative
vorticity snapshots on figure 4. Time scales are nondimensionalized with the length of the day pW-2 1 and length scales with the planet
radius a.
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Higher-order closures
CE2 fails to capture eddy absorptionwhen eddy–eddy interactions are important for the dynamics.We tested
whether a higher-order closure (CE3*) captures eddy absorptionmore faithfully. CE3* is described inMarston
et al (2014). It truncates the cumulant equations at third order, ensuring realizability by projecting outmodes
with (unphysical)negative energies.

The results are summarized infigure 10. Because CE3* is computationally expensive, the resolution has been
reduced toM=40 and L=20. For simplicity we turn off eddy damping (t = ¥, seeMarston et al 2014 for
definitions). The full andCE2 simulations infigure 10 are run at this lower resolution and are consistent with the
higher-resolution runs (figure 5); however, they do exhibit a faster eddy damping because of the stronger
diffusion. It appears that CE3* captures the eddy absorption very accurately.We also tested other closures that
take into account third-order terms (Marston et al 2014); they bring similar improvements.

4.4. Implications
The results show that direct CE2 calculation of barotropic flow statistics representative of the upper troposphere
can succeed in circumstances when the dominant nonlinear interaction is between eddies and themeanflow, for
example, by shearing. They fail when strongly nonlinear eddy–eddy interactions become important in surf zones
around critical layers, where the roll-up of vorticityfilaments leads to the generation of small scales. This is a
process that cannot be captured in CE2.However, higher-order closures, which take some effects of third
cumulants on second cumulants into account, can performbetter in such cases—at the price of increased
conceptual and computational complexity.

Weakly nonlinear eddy-mean flow interactions seem to be favored over strongly nonlinear eddy–eddy
interactionswhen the eddy vorticity is small enough comparedwith the planetary vorticity. The transition from
weakly to strongly nonlinear interactions predominating occurs above a critical value of eddy amplitude ò that is
a decreasing function of the Rossby number Ro. The parameter ò need not be small for absorption through

Figure 8.Evolution of eddy kinetic energies eK in the fully nonlinear simulation (left column) and in a direct CE2 calculation of eK
(right column) for the larger-amplitude eddies ( = 6), with Rossby number decreasing from =Ro 0.06 to 0.02. Time scales are
nondimensionalized with the length of the day pW-2 1 and length scales with the planet radius a.
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weakly nonlinear shearing to occur. For example, for small Ro, weakly nonlinear eddy absorption through
shearing seems to be favored evenwhen a large value of ò suggests that nonlinear eddy–eddy interactions should
be larger than themean-flow shearing of eddies.

When strongly nonlinear eddy–eddy interactions are favored, high eddy kinetic energies develop in theQL/
CE2 approximation becausemomentum sloshes back and forthmeridionally within the jet, without sufficient
absorption. Lifecycle experiments carried outwith aQLGCMhave shown that this phenomenology is relevant
to the upper troposphere in an Earth-like setting, highlighting the relevance of the simplified barotropicmodel:

Figure 9.Evolution of relative vorticity in the fully nonlinear simulation for the larger-amplitude eddies ( = 6), with Rossby number
decreasing from =Ro 0.06 to 0.02. For comparison, thefirst row reproduces the vorticitymaps already shown infigure 4. Time scales
are nondimensionalized with the length of the day pW-2 1.
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Figure 10.Evolution of eddy kinetic energies eK (top) and eddymomentum fluxes EMFC (bottom) in the fully nonlinear simulation
(left column), in a direct CE2 calculation (middle), and in aCE3* calculation (right), all for the larger-amplitude eddies ( = 6) and an
Earth-like setting ( =Ro 0.06). Comparedwith the simulations in previous figures, the resolution is reduced toM=40 and L=20.
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earthʼs upper troposphere appears to be in a regime inwhich nonlinear eddy–eddy interactions in surf zones are
important for the structure of themomentum fluxes (Ait-Chaalal and Schneider 2015).

5. Conclusions

Atmosphericflows are highly anisotropic and inhomogeneous, with rich spatial structures. Turbulent closures
that respect the anisotropy and inhomogeneitymay enable the direct statistical simulation of Earthʼs
atmosphere (Marston 2012). Expansion of statistics in equal-time cumulants yields equations ofmotion for the
statistics that can already provide useful closures at second order (CE2), because themeanflows and interactions
of perturbations with them are strong (Herring 1963,O’Gorman and Schneider 2007,Marston et al 2008, Tobias
andMarston 2013,Marston et al 2014). CE2 solves the first two cumulant (centralmoment) equations of theQL
approximation, inwhich interactions betweenmeanflows andfluctuations around it are retained, while
nonlinear eddy–eddy interactions are neglected. In section 2, we formulatedCE2 for the Boussinesq equations
by introducing a condensed tensorial notation. The case of the anelastic equations is presented in appendix A
and involves the use of density weighted averages.We tested the relevance of CE2 to two distinct atmospheric
flows involving different length and time scales and force balances: turbulent convection in the atmospheric
boundary layer (section 3), andweak two-dimensional turbulence representative of the upper troposphere
(section 4).

Convection in the atmospheric boundary layer links large-scale atmospheric dynamics aloft to the surface
underneath,mediating the exchanges ofmomentum, energy, andwater between the surface and the free
troposphere.Motions in boundary layers and in clouds that have their roots in themhave dynamical scales of
meters,meaning that they need to be parameterized inGCMs. Current parameterization schemes have
numerous shortcomings; our inability to represent cloud and boundary layer dynamics adequately in climate
models is the largest source of uncertainty in climate change projections. Because CE2s capture interactions
betweenfluctuations (e.g., thermals) andmeanfields and take nonlocal correlations offluctuations into account,
without requiring the introduction of tunable parameters that proliferate in current parameterization schemes,
theymay offer away to achievemore physically consistent parameterizations.We presented encouraging initial
results, showing that aQL large-eddy simulation of a dry convective boundary layer captures the first-order
statistics (e.g., mean boundary layer growth) of a corresponding fully nonlinear LES.However, it does not
capture second-order statistics adequately.Morework is required to investigate towhat degree these results hold
generally, in broader classes of boundary layerflows and in the presence ofmoisture effects and clouds, and how
theQL results can be improved by including representations of higher-order effects, such as the turbulent
transport of kinetic energy.

The potential for development of parameterization schemes based onCE2 is a promising direction for future
research. But it requires overcoming both technical and theoretical challenges. On the technical level, fast
numericalmethods are required for themethod to be competitive with other subgrid schemes. This could be
achieved by dimensional reduction to capture only themost important nonlocal correlations in the second
cumulant. At the theoretical level, it is not clear towhat extent CE2 and possible extensionswill be able to
describemoist convection, orwhat effects vertical shear will have on its accuracy. It appears necessary to include
some effects of eddy–eddy interactions, such as those captured by the third order CE3* approximation (Marston
et al 2014).

At the planetary scale, how andwhere eddies in the upper troposphere dissipate controls the strength and
direction ofmomentum fluxes and thus climatic features such as surfacewinds. A one-layer barotropicmodel
thatmimics the behavior of the upper troposphere illustrates differentmechanisms throughwhich eddy
absorption by themeanflow can occur. CE2 describes eddy absorptionwell when it occurs through shearing of
eddies by themeanflow. This happenswhen the vorticity that characterizes the eddies is small comparedwith
the planetary vorticity (planetary rotation rate).When the eddy vorticity is large, CE2 is not adequate because
eddy absorption results from the formation of small scales that form through eddy–eddy interactions in critical
layers. A comprehensive theory that describes theseweakly and strongly nonlinear absorptive regimes is lacking.

Our results suggest that, in general, higher-order closures are required for an accurate direct statistical
simulation of large-scale and smaller-scale atmospheric flows.We have tested a few of them in the large-scale
context and found improvement comparedwithCE2.Nevertheless, going beyondCE2 raises a number of
questions.Higher-order closures are several orders ofmagnitude slower thanCE2; currently, they aremuch
slower than direct simulation of theflows, while CE2 can be faster that direct simulations. Dimensional
reductionmay be able to help here.More generally, once eddy–eddy interactions are taken into account, the
whole hierarchy of cumulants is active and not completely described by any finite closure. Realizability of
closures becomes an issue (e.g., Orszag 1970,Orszag et al 1973,Marston et al 2014), and it is known that
intermittency cannot be adequately described in this way (Frisch 1995, Lesieur 2008). But the existence of
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anisotropic and inhomogeneousmeanflows provides a starting point for a systematic exploration of statistical
closures.
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AppendixA. CE2 of anelasticflow

Because theflow is nondivergent in the Boussinesq equations, it is possible to directly use any averaging operator
satisfying the properties (7). However, formore generalflows, inwhich the densitymay vary, the requirements
on the averaging operator need to bemodified so that second-order equations for fluctuations consistent with
the conservation laws are obtained. Because density appears as aweight in all integrals of conserved quantities
over theflowdomain, the density weighted average * r r=(·) ( · ) , with (·) satisfying the Reynolds properties
(7), leads to a decomposition of the flow that is amenable to closures such as CE2. The density weighted average
satisfies (7a)–(7c) but, importantly, not commutativity with partial differentiation (7d). Thus, we can define an
eddymeanflowdecomposition

*= + ˆ ( )f f f a, A.1

* * * *= + ˆ ˆ ( )fg f g f g b, A.1

with hats *= -(·)ˆ (·) (·) denoting fluctuations around the density weightedmean. This is sometimes called the
Favre decomposition.

How a varying density affects cumulants andCE closures can be illustratedwith the anelastic equations, an
extension of the Boussinesq equations that allows the reference density r r= ( )z0 0 to varywith height z. In the
anelastic approximation, density perturbations dr, the pressure potential d rF = p 0, and the buoyancy

dr r= -b g 0 are defined relative to this height-dependent and hydrostatically balanced reference density. The
state vectorY is defined as in (2). We have to consider covariances involving F and notΦ becausemultiplying
by density does not commutewith derivatives. For simplicity, we assume that the linear operator  is
homogeneous in the reference density and satisfies  r rY Y=( ˜ ) ( ˜ )0 0 . It implies that it cannot involve any
spatial derivative. The anelastic equations in a reference frame rotatingwith angular velocityW are (Vallis 2006):

r
r r r

Y
Y Y

¶
¶

+  Ä = - F +· [ ] [ ] ( )
t

au L F, A.20
0 0 0

r =· ( )bu 0. A.20

The Boussinesq equations (1) are obtained from the anelastic equations by setting r0 to a constant. The
continuity equation (A.2b) again reduces to a nondivergence constraint. Because the reference density r0

appears in it, we need to use the reference-density weighted average * r r=(·) ( · ) ¯0 0 to derive theCE2.

The equation for thefirst cumulant *Y( )tr, is obtained by averaging (A.2):

*
* * * * *r

r r r r f
Y

Y Y Y
¶
¶

+  Ä = - Ä + - 
¯ · [ ¯ ] · [ ¯ ˆ ˆ ] [ ¯ ] ¯ ( )

t
au u L , A.30

0 0 0 0

*r =· ¯ ( )bu 0. A.30

Todefine a second centralmoment or second cumulant, we need a quantity that respects the symmetry (11)
of the covariancematrix under exchange of the spatial coordinates r1 and r2, that gives the second-order term in
thefirst cumulant equation (A.3), and that corresponds to a density weighted average when =r r1 2. A possible
choice is

r r Y Y= + Ä+( ) [ ( ) ( )] ˆ ( ) ˆ ( ) ( )t t tC r r r r r r, ,
1

2
, , . A.41 2 0 1 0 2 1 2

Wealso define the two auxiliary covariances corresponding to (12)

r r Y= + F+
F ( ) [ ( ) ( )] ˆ ( ) ˆ ( ) ( )t t t aC r r r r r r, ,

1

2
, , , A.51 2 0 1 0 2 1 2
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r r Y= + Ä+( ) [ ( ) ( )] ˆ ( ) ˆ ( ) ( )t t t bC r r r r r u r, ,
1

2
, , , A.5u

1 2 0 1 0 2 2 1

and introduce the corresponding quantities, -C , +
FC , and -Cu with the density difference instead of the sum, as in

r r Y Y= - Ä-( ) [ ( ) ( )] ˆ ( ) ˆ ( ) ( )t t tC r r r r r r, ,
1

2
, , . A.61 2 0 1 0 2 1 2

Some algebra then gives the equations ofmotion for the second cumulant:
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Truncation of theCE2 at second order (CE2) consists of equations (A.3) and (A.7), neglecting the third-
order term. Clark and Spitz (1995) have derived the evolution equation of the single-time two-point covariance
tensor for the compressible Navier–Stokes equation, yielding amore general version of (A.7).

Appendix B. Eddy absorption in theQL approximation

To illustratemore clearly whyCE2 fails to capture the absorption of larger-amplitude eddies, we performQL
simulations of the barotropic vorticity equation (24), eliminating eddy–eddy interactions as in theQL
approximation (22) of the Boussinesq equations. The relative vorticity in theQL simulation is shown in
figure B1 . The positive vorticity anomaly (labeledV) that detaches from awave crest is initially sheared by the
meanflow, leading tomomentum fluxes that strengthen themeanflow and to a decrease of the eddy kinetic
energy (Orrmechanism). It is then advected around the center of the cats’ eye (labeledX). But instead of rolling
up into a small-scalefilament as it does in the fully nonlinear simulation (see figure 4), itmoves to thewestern
side of the eye, where it joins thewave lobewith positive vorticity west of the one fromwhere it originated
( =T 5.9). An analogous description applies to the negative vorticity anomaly inside the eye. This leads at
=T 5.9 to vorticity anomalies that have a southeast–northwest tilt of phase lines, consistent with an

Figure B1. Evolution of relative vorticity in aQL simulation of the larger-amplitude eddies ( = 6) and anEarth-like setting
( =Ro 0.06), for which the fully nonlinear simulation is shown in figure 4.White Xʼsmark the centers of what would become cats’
eyes in the fully nonlinear simulation. The locations labeled byV follow a positive vorticity anomaly that detaches from an initial wave
lobe.
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equatorward eddymomentumflux (reflection phase) and an increase of EKEbecause themean-flow shear goes
against the tilt (Orrmechanism). The vorticitymap after two cycles of absorption and reflection ( =T 17.5) is
very similar to the initial one (T=4). Differences arise fromwave absorption occurring throughweakly
nonlinear processes and, to a lesser extent, fromhyperviscosity. This is in sharp contrast to the full simulation, in
which filamentation takes place, eventually leading to irreversibility (seeT=4 and =T 17.5 offigure 4).
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