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probability distribution in the initial regime
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We study an instantaneous bimolecular chemical reaction in a two-dimensional chaotic, incom-
pressible and closed Navier-Stokes flow. Areas of well mixed reactants are initially separated by
infinite gradients. We focus on the initial regime, characterized by a well-defined one-dimensional
contact line between the reactants. The amount of reactant consumed is given by the diffusive flux
along this line, and hence relates directly to its length and to the gradients along it. We show
both theoretically and numerically that the probability distribution of the modulus of the gradient

of the reactants along this contact line multiplied by κ
1
2 does not depend on the diffusion κ and

can be inferred, after a few turnover times, from the joint distribution of the finite time Lyapunov
exponent λ and the frequency 1

τ
. The equivalent time τ measures the stretching time scale of a

Lagrangian parcel in the recent past, while 1

λ
measures it on the whole chaotic orbit. At smaller

times, we predict the shape of this gradient distribution taking into account the initial random
orientation between the contact line and the stretching direction. We also show that the probability

distribution of the reactants is proportional to κ
1
2 and to the product of the ensemble mean contact

line length with the ensemble mean of the inverse of the gradient along it. Besides contributing
to the understanding of fast chemistry in chaotic flows, the present study based on a Lagrangian
stretching theory approach provides results that pave the way to the development of accurate sub-
grid parametrizations in models with insufficient resolution for capturing the length scales relevant
to chemical processes, for example in Climate-Chemsitry Models.

I. INTRODUCTION

Chemical reactions in the stratosphere have been
shown to be sensitive to the numerical spatial resolution
when the chemistry is fast compared to advective pro-
cesses ([1, 2]). It was proposed by [1] that the product
concentration of the deactivation of polar vortex chlorine
by low latitudes nitrogen oxide at the edge of the strato-
spheric Northern hemisphere winter time polar vortex
scales like κp(t), with being κ the reactant diffusion. Later
on, [3] argued that p(t) can be expressed as 1 −D(t)/2,
where D(t) is the box counting fractal dimension of the
contact line between the reactants. Here we focus on
the initial regime of a instantaneous bimolecular chemical
reaction in a two dimensional Navier-Stokes flow charac-
terized by chaotic trajectories (this provides an idealized
framework for isentropic dynamics in the stratosphere).
By definition, the initial regime is characterized by a well-
defined one-dimensional contact line (i.e. D = 1). The
reactants are initially separated by infinite gradients.
In a previous work ([4]) dealing with this regime, we

have shown that the ensemble mean reactant concentra-
tion time derivative scales like κ

1
2 and can be predicted

accurately from the Lagrangian stretching properties of
the flow. Here we investigate the statistical properties of
the chemical production and of the reactants concentra-
tions.
In section II, we explain how the study of an infinitely

fast chemical reaction A + B −→ C simplifies into the

∗ Corresponding author, farid.aitchaalal@mcgill.ca

study of a passive tracer whose concentration field φ is
defined as the difference between the concentrations fields
of the two reactants A and B . The rate at which the
reactants disappear is the diffusive flux of φ along the
contact line, and hence depends on both its length and
the gradients along it. In section III, we give some the-
oretical relations between, on one hand, the contact line
length and the gradients of the reactants along it, and,
on the other hand, the Lagrangian stretching properties
of the flow. In section IV, we focus on the probability
distribution of the reactants concentration. Section V
describes the Lagrangian stretching properties of a two-
dimensional Navier-Stokes flow and section VI presents
some numerical simulations to test the theoretical results
of sections III and IV in the flow introduced in section
V.

II. FINITE TIME LYAPUNOV EXPONENTS

AND CHEMICAL PRODUCTION IN A

CHAOTIC FLOW

We consider the bimolecular chemical reaction A +
B −→ C in stoechiometric quantities. One molecule of A
reacts locally with one molecule of B to give one molecule
of C. As a result, the field φ = CA − CB , defined as the
difference between the reactants’ concentration fields CA

and CB , is independent of the chemistry. If, in addition,
the reaction is instantaneous, A and B cannot coexist at
the same location. Consequently, the fields CA and CB,
and their spatial average over a closed domain denoted
by an overbar, can be retrieved from φ as follows ([3, 4]):

http://arxiv.org/abs/1110.3852v1
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{
CA(x, t) = φ(x, t) and CB(x, t) = 0 if φ(x, t) > 0
CB(x, t) = −φ(x, t) and CA(x, t) = 0 if φ(x, t) < 0

(1a)

CA = CB =
|φ|
2

(1b)

If A and B are separated by a contact line L = {x|φ(x) =
0} of dimension one oriented in a counterclockwise di-
rection such that it encloses reactant A (domain DA),
the time derivative of the reactants in an incompressible
closed flow is:

AdCA

dt
= AdCB

dt
=

1

2
Ad|φ|

dt
= −κ

∫

L(t)

∇φ · ndl, (2)

where A is the total area of the domain and n a unit
vector normal to L(t) pointing outward from DA. We

call − d|φ|
dt the chemical speed. Furthermore, on every

line element dl of L(t), the quantities κ
2∇φ · ndl of A

and B are consumed. As a consequence, knowing the
length of L(t) and the probability distribution of |∇φ|
along it, gives a comprehensive statistical description of
the chemistry in the domain.
The equation for the passive tracer φ is:

∂φ

∂t
+ u · ∇φ = κ∇2φ, (3)

where u is the flow. If the trajectories are chaotic, equa-
tion (2) allows to link the chemical speed to the La-
grangian stretching properties of the trajectories as cap-
tured by the finite time Lyapunov exponents (FTLE),
defined as the rate of exponential increase of the dis-
tance between the trajectories of two fluid parcels that
are initially infinitely close. If δl(t) is the distance be-
tween two parcels that start at x and x+ δl0, then the
FTLE λ(x, t) at x over the time interval t is

λ(x, t) =
1

t
max
α

{
ln

|δl|
|δl0|

}
, (4)

where the maximum is calculated over all the possible
orientations α of δl0. The unit vector with the orienta-
tion ψ+(x, t) of δl0 at the maximum defines a “singular
vector” ψ+(x, t) ≡ (cosψ+, sinψ+). In the inviscid limit,
it can be shown, with the conservation of tracer concen-
tration for Lagrangian parcels, that λ(x, t) is also the
rate of exponential increase of a gradient initially aligned
with the unit vector ψ

−
(x, t) ≡ (− sinψ+, cosψ+) per-

pendicular to ψ+.
We can calculate FTLE and singular vectors in an

incompressible flow using the velocity gradient tensor
S ≡ ∇u(X, t) along a trajectory X(x, t). The distance
δl between two trajectories initially infinitely close is
solution of dδl

dt − S(t).δl = 0 and is given by δl =
Mδl(t = 0) where the resolvent matrix M is solution
of dM

dt − S(t).M = 0. The finite time Lyapunov expo-
nent λ(t) is given by the log of the largest eigenvalue of

[MTM]
1
2t , with ψ+ the associated eigenvector.

In ergodic chaotic dynamical systems, it has been
shown that the FTLE converge to an infinite time Lya-
punov exponent independent of the initial position x,
while the singular vectors converge to the forward Lya-
punov vector Ψ+ ≡ (cosΨ+, sinΨ+) that depend on x
(Osedelec theorem, [5]). The convergence of the Lya-
punov exponent is very slow and algebraic in time ([6])
while the convergence of the Lyapunov vector is much
faster, and typically exponential ([7]). A discussion spe-
cific to high Reynolds number two-dimensional Navier-
Stokes flows is available in [8]. Here we will only take
into account the time dependence of the FTLE, assum-
ing the singular vector field is only a function of space,
not of time, equal to the forward Lyapunov vector field.
This assumption will allow us to link the evolution of
a gradient along a trajectory to the Lagrangian strain-
ing properties of the flow, while taking into account the
diffusion (see (10) below)
An element δl0 = |δl0| (cosα, sinα) of the contact line

at the initial time is advected at time t into an element
δl whose squared norm is

|δl|2 = δlT0M
TMδl0

= |δl0|2
[
e2λt cos2(ψ+ − α) + e−2λt sin2(ψ+ − α)

]

(5)
Noting that the angle α is random, we can show, aver-
aging over λ, ψ+ and α, that the total ensemble average
length of the contact line is (brackets are for an ensemble
average):

〈L〉(t) =
L0

∫ π

0

∫∞
0

dγ
π dlPλ(t, l)

√
e2lt cos2 γ + e−2lt sin2 γ,

(6)

with L0 the initial length of L and Pλ(t, l) the time de-
pendent probability density of λ. Henceforth, the inte-
gration bounds over l and γ will be implicit and the same
as in (6). This expression is valid when the diffusion is
not taken into account. For large times, when two fila-
ments are brought together at a distance smaller that the
diffusive cutoff, they merge under the action of diffusion.
We think the time span of this regime to be well approxi-
mated by the mix-down time scale Tmix ≈ 1

2λ ln Leλ
κ from

the largest scale Le of the flow to the diffusive cutoff ([9]).
If the strain S is an estimation of λ, which is the case for
the flow we study section V and VI (figure 1), and if 1

S
is an estimate for the integral time scale T of the flow,
which is also true in our flow, we get that

Tmix ≈ T

2
lnPe =

T

2
lnRePr, (7)

where Pe is the Peclet number, Re the Reynolds number
and Pr = Pe

Re the Prandtl number. Our previous work
[4] has shown that (6) is very accurate on time scales of
the order of Tmix in the flow we describe in section V.
Assuming the stationarity of the singular vectors, as

explained previously, and noting the existence of a local
1-D solution χt(z), as in [10], in the direction z normal
to the contact line, of the advection-diffusion equation
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(3) written in the co-moving frame with a contact line
element, [4] showed that, for an initial gradient profile
of tracer A0δ(z), with δ the Dirac delta function, this
solution is:

χt(z) = A0 Erf
(

zG
2
√
κ

)

with G =
√

e2λt cos2(Ψ+−α)+e−2λt sin2(Ψ+−α)
τe2λt cos2(Ψ+−α)+τ̃ sin2(Ψ+−α)

.
(8)

The concentration A0 is the initial concentration of reac-
tants A and B in their respective domain. The function
Erf is the gauss error function defined on R as follows:

x 7−→ 2√
π

∫ x

0
e−t2dt. The two quantities τ and τ̃ are:

τ =

∫ t

0 e
2uλ(u)du

e2tλ(t)
and τ̃ =

∫ t

0

e−2uλ(u)du. (9)

The time τ has been introduced through the wavenum-
ber growth along Lagrangian trajectories by [11] and was
called an equivalent time by [12]. Because the trajectories
are chaotic, 1

τ is the stretching rate in the recent past (i.e
approximately over the last correlation time). [12] have
argued that when the correlation time of the stretching
is much smaller than the time scale of the decay of the
mean Lyapunov exponent, τ becomes independent of λ
at large times and that its probability distribution con-
verges to a time independent form. The time τ̃ is also an
equivalent time that measures the stretching rate in the
early part of the trajectory. As a consequence, we expect
τ and τ̃ to have the same statistics, to be asymptotically
equivalent as t→ 0 (typically for times smaller than the
correlation time of the stretching) and to become inde-
pendent at larger times. From (9), we can see that the

gradient along the contact line |∇φL| ≡ ∂χt(z)
∂z |

z=0
is:

|∇φL| = A0√
πκ
G (10)

III. PROBABILITY DISTRIBUTION OF THE

REACTANT GRADIENTS ON THE CONTACT

LINE

The distribution of |∇φL|
√
πκ
A0

can be inferred form the

distribution of G (eq. 10) and λ and does not depend
on κ. Its probability density function (pdf) along the
contact line PG,L is given by:

PG,L(t, g) =

∫∫
dγ
π dlPG,λ(t, g, l)

√
e2lt cos2 γ + e−2lt sin2 γ

∫∫
dγ
π dlPλ(t, l)

√
e2lt cos2 γ + e−2lt sin2 γ

,

(11)

where we have introduced the joint pdf PG,λ of G and
λ. Considering an orbit characterized by (λ, τ, τ̃ ,Ψ+, α),

expression (11) can be derived noting that
√
πκ
A0

|∇φL| is
equal to G(t, λ, τ, τ̃ ,Ψ+, α) on a fraction of the contact
line

|δl| / |δl0|
〈L〉/L0

=

√
e2λt cos2(Ψ+ − α) + e−2λt sin2(Ψ+ − α)

∫∫
dγ
π dlPλ(t, l)

√
e2lt cos2 γ + e−2lt sin2 γ

.

(12)

For times such that t≫ 1
4λ , the sine terms in (11) can be

neglected: the gradients are equilibrating with the flow
and the time asymptotic form of G is 1√

τ
(see (8)). As

a consequence, for t ≫ 1
4λ ≈ T

4 , PG,L(t, g) is asymptoti-
cally equivalent to PG,L,∞:

PG,L(t, g) ∼ PG,L,∞(t, g) =

∫
dlP 1√

τ
,λ(t, g, l)e

lt

∫
dlPλ(t, l)elt

, (13)

where P 1√
τ
,λ is the joint pdf of 1√

τ
and λ. It is worth not-

ing that if τ and λ were independent, which is expected
at the very long times, the pdf of g along the contact
line would be equal to the pdf of 1√

τ
. This can be seen

writing the bivariate density P 1√
τ
,λ as the product of its

marginal densities in (13).

IV. PROBABILITY DISTRIBUTION OF THE

REACTANTS CONCENTRATIONS

The reactants are in stoechiometric quantity and their
initial concentration in their respective domain is A0. As
a consequence, it follows from (1) that the pdfs of CA,
CB and |φ| are the same. The corresponding random
variable will be noted Φ. Our objective is to understand
its dependence with κ and with time, as well as its shape.
The profil of the tracer gradient close to the contact

line is given by (8), expression that should be valid as long
the contact line is well-defined with a curvature larger

than
√
κ
g , which is expected as long as t < Tmix. We

assume that an ǫ ≪ 1 can be chosen such that, for all
members, the length

δt = 2χ−1
t

(
A0(1− ǫ)

)
=

4
√
κ

G
Erf−1(1− ǫ) (14)

satisfies La ≡
√
A ≫ δt ≫ √

κτ . The range [− δt
2 ,

δt
2 ]

is where |χt| takes values smaller than A0(1 − ǫ). This
can be seen noting that χt is a monotonic odd increas-
ing function with χt(± δt

2 ) = ±A0(1 − ǫ). In fact, we

have La√
κτ

≪ 1 because La√
κ
S

∼
√
Pe is very large by

assumption (the Peclet number in the simulations pre-
sented in section VI will be of the order of 104 to 106).
However, 1

τ is in general different form S: the former
measures a Lagrangian stretching rate in the recent past
while the latter measures an Eulerian stretching rate (for
a comparison in the flow considered in section VI, one
can refer to figure 1, noting that the strain is the Lya-
punov exponent at small times). It is possible to choose
δt far from both La and

√
κτ because we are considering

a well-defined contact line between areas of well mixed
reactants. As mentioned earlier, this is expected to be
true for t < Tmix.
If we consider a profile χt of tracer around the con-

tact line in the range [− δt
2 ,

δt
2 ], the cumulative distribu-

tion function (cdf) of Φ, i.e. the probability of having Φ
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smaller than a given value φ, is

fΦ(φ) =
χ−1
t (φ)
δt
2

=
χ−1
t (φ)

χ−1
t (A0(1 − ǫ)

=
Erf−1( φ

A0
)

Erf−1(1− ǫ)
(15)

and stands for values of φ in the range [0, A0(1 − ǫ)].

We multiply by 〈δt〉〈L〉
A to obtain the cdf Fφ in the whole

domain of areaA because values in the range [0, A0(1−ǫ)]
are achieved on a sub-domain of area 〈δt〉〈L〉:

FΦ(φ) =
〈δt〉〈L〉

A
Erf−1( φ

A0
)

Erf−1(1− ǫ)
. (16)

Using equation (14) to calculate 〈δt〉, we have:

FΦ(φ) =
4

A
√
κ〈L〉〈 1

G
〉Erf−1(

φ

A0
) for φ ∈ [0, A0(1− ǫ)].

(17)
Finally, the probability density is the derivative of the
cdf with respect to φ:

PΦ(φ) =
4

AA0

√
κ〈L〉〈 1

G
〉Erf−1′

( φ
A0

)
for φ ∈ [0, A0(1−ǫ)].

(18)
A direct consequence of well mixed reactants away from

the well-defined contact line is the term Erf−1′ (deriva-
tive of the inverse of the Gauss error function). It ex-
presses that the shape of the pdf is an increasing func-
tion and can be directly related to the profil of the tracer
field close to the contact line. The denisty PΦ is pro-
portional to

√
κ〈L〉 because the area where the field φ

takes non-trivial values (i.e significantly different from
the initial value A0) is proportional to

√
κ〈L〉: its length

is 〈L〉 while its width is controlled by diffusive processes.
Finally the term 〈 1

G 〉 depicts the effect of the mean gradi-
ent, with a decrease of the gradient along the contact line
explaining an increase in the probability of small values
of |φ|.

V. STATISTICS OF THE LAGRANGIAN

STRETCHING PROPERTIES IN A

TWO-DIMENSIONAL NAVIER-STOKES FLOW

The numerical model integrates the following vorticity
equation using the pseudo-spectral method:

∂ω

∂t
+ u ·∇ω = F −R0ω + ν∇2ω, (19)

where ω is the vorticity, F a forcing term at wavenum-
ber 3, R0 the Rayleigh friction and ν the viscosity.
The equation is integrated in a doubly periodic box
[−π, π] × [−π, π] on a 512× 512 grid. The integral time

scale of the flow T ≡
√

2
〈ω2〉 ≈ 1

S , where the brackets

stand for an ensemble average, will be used to normalize
the time axis. The Reynolds number is of the order of
104.

FIG. 1. Probability density of the Lyapunov exponents (top
left), of the inverse of the equivalent time τ defined in (9)
(top right) for 0 < t ≤ 25T . We note that the density of λ at
t = 0.25T is roughly the density of the strain. At the bottom,
their joint density at t = 4T (left) and t = 25T (right).

Trajectories are computed using a fourth order Runge-
Kutta scheme with a trilinear interpolation on the veloc-
ity field. On each trajectory, we integrate the resolvent

matrix M such that dM
dt = SM with S =

∂uj

∂xi
the veloc-

ity gradient tensor along the trajectory and M(t = 0) the
identity matrix. The largest eigenvector of the symmetric
positive matrix tMM is e2λt, where λ is the Lyapunov
exponent on the trajectory at the finite time t. This
method is described in more detail in [13]. We also cal-
culate the equivalent times τ and τ̃ through a numerical
integration of (9). The trajectories are computed for hun-
dred realizations of the flow, each realization spanning 25
turnover times. This gives access to the statistics of λ,
τ , τ̃ and G involved in equations (11) and (13).

Figure 1 shows the time evolution of the pdf of λ and
1
τ . The pdf of λ converges to the pdf of the strain Ps as
t → 0 because the strain is the FTLE on each chaotic
orbit for an infinitely small time (see (4)). The pdf does
not evolve much during the first turnover time, as the
correlation time is expected to be of the order of T, or
larger. Then, the variance of the FTLE decreases while
the density shifts toward smaller values. The peak of the
density saturates at λmax = 0.02, which we think is a
rough estimate of the infinite time Lyapunov exponent.
For a more detailed description of the FTLE, the reader
can refer to [14] in chaotic flow, to [8] in two-dimensional
turbulence and to [13, 15, 16] in geophysical flows. For
times smaller than one turnover time, the pdf of 1

τ shifts
toward smaller value, its shape being only slightly af-
fected. This can be interpreted assuming that λ does
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not evolve much on trajectories and can be estimated
by the strain S where the trajectory originates. Hence,
τ ≈ 2S/(1 − e−2St), which gives 1

τ ≈ λ + 1
t for t ≪ 1

2S .

The pdf P (t, x) of 1
τ is then approximated by Ps(x − 1

t )
where Ps is the pdf of the strain. In addition, as we
expected in section II, we observe that the density of 1

τ
converges to a time independent form.
Figure 1 also shows the joint pdf of λ and 1

τ at t = 4T ,
well within the time range where we think (11) should
be a satisfying description of the gradient pdf. The joint
pdf at t = 25T shows this dependence is still impor-
tant at large times. Previous studies (e.g [11]) have as-
sumed the independence between λ and τ at long times.
This is relevant in simple chaotic flows. However, two di-
mensional Navier-Stokes flow exhibit coherent structures
(vorticies, filaments of vorticity, etc...) probably making
the Lagrangian correlation time dependent on the trajec-
tories. In particular, very long correlation times could be
associated with trajectories trapped in vorticies, where
the stretching rate is particularly weak. This could ex-
plain the strong dependence between large values of τ
and small values of λ.

VI. NUMERICAL RESULTS

A. Gradients along the contact line

The numerical simulations are performed for eight dif-
ferent Prandtl numbers Pr ≡ κ

ν = 2i for 0 ≤ i ≤ 7. For
each one we run an ensemble of 34 simulations integrating
equations (3) and (19) in the periodic box. Each member
is defined by its initial condition on the flow, taken as the
vorticity field every turnover time of a long time simula-
tion of the statistically stationary flow solution of (19).
For each member, we use the following initial condition
on the tracer:

φ(x, y, t = 0) = 2A0(H(x) − 1

2
) for (x, y) ∈ [−π, π]2,

(20)
where H is the Heaviside step function. In other words,
in one half of the box, CA = A0 and CB = 0, and in the
other half CA = 0, and CB = A0. A and B are separated
by initially infinite gradients. This is not exactly true in
the numerical integrations because of the finite resolution
of the model and has to be kept in mind for an accurate
interpretation of the numerical results.
For each member we determine the coordinates of the

contact line L with a time increment T
4 using the library

DISLIN ([17]). We calculate the modulus of the gradient
of φ at each of these coordinates using bilinear interpo-

lation. We then multiply it by
√
πκ
A0

in order to obtain a

physical quantity that scales like G in equation (8) and
which we name Ge,Pr . A weighted histogram of Ge,Pr

is calculated every time increment T
4 using as weight the

length enclosed by three consecutive points of L centered
in the point where Ge,Pr is estimated. This is necessary

since the points are not equidistant. The probability den-
sities obtained after normalization of these histograms
are noted PG,Pr.
On figure 2 we plot PG,Pr for different Prandtl numbers

and different times. We observe:

• When time becomes shorter, as observed from t =
4T to t = 0.25T , the independence of Ge,Pr to Pr,
as predicted in sections III and IV, is not verified.
As a matter of fact, the gradient cannot be consid-
ered as infinite at the initial time because of the
finite grid size of the numerical model. This effect
can be quantified: we can solve the advection dif-
fusion equation in a Lagrangian co-moving frame
with a contact line element for the tracer profile
around this line with the initial condition on the

gradients ∂χt

∂z |
t=0

= A0

2δ0
√
π
e
− x2

4δ2
0 (δ0 is a length cor-

responding to a grid point). We get:

|∇φL| = A0√
πκ
Gκ

with Gκ =
√

e2λt cos2(Ψ+−α+e−2λt sin2(Ψ+−α)
δ2
0
κ
+[τe2λt cos2(Ψ+−α)+τ̃ sin2(Ψ+−α)]

,
(21)

where Gκ now depends on diffusion through the

term
δ20
κ (this expression has to be compared to G

in (8)). The initial gradient cannot be assumed in-
finite when the diffusive cutoff

√
κτ is of the order

of the grid size δ0. The time scale TPr where this ef-
fect is important can be evaluated by comparing the

two terms
δ20
κ and [τe2λt cos2(Ψ+−α)+ τ̃ sin2(Ψ+−

α)] in the denominator of G2
κ. Approximating λ

with S, we find TPr ≈ 1
2S ln(1+

2δ20
ν
S

Pr), which gives

respectively TPr/T = 0.12; 0.25; 0.45; 0.75; 1.2; 1.6
for Pr = 4; 8; 16; 32; 64; 128. This calculation is
consistent with the numerical results presented on
figure 2, the pdf PG,Pr being independent of Pr for
t & TPr

• At t = 4T , the densities PG,Pr=128 and PG,Pr=64

are different from PG,Pr≤32. Because of the fi-
nite resolution of the model, gradients at the high
end of these distributions cannot be resolved. This
explains the strong asymmetry of these densities.
This effect is also observed at other times: in par-
ticular, it explains the kick at the very high end of
the densities GPr≥32 at t = 0.25T .

• At t = 7T , the densities PG,Pr are not anymore
independent of Pr because we are at t & Tmix(κ)
for all the Prandtl numbers

In order to remain consistent with the infinite initial
gradient hypothesis, we will only consider small enough
Prandtl numbers. We compare on figure 3 the numerical
results to the theoretical predictions PG,L (11), PG,L,∞
(13), and to the pdf of 1√

τ
.
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FIG. 2. Probability density PG,1≤Pr≤128 of Ge,Pr =
√

πκ
A0

|∇φL| where |∇φL| is the modulus of the gradient of φ along the

line L = {x|φ(x) = 0}. These pdf are obtained from an ensemble of 34 direct numerical simulations and plotted here for
t = 1

4
T, 1

2
T, T, 4T and 7T

• For t . T , only PG,L shows some success in pre-
dicting PG,Pr. This is consistent with (11) which
states that the effect of γ cannot be neglected at
times smaller than T .

• For t = 4T , PG,L and PG,L,∞ are much more sim-
ilar because the contact line elements have equili-
brated with the flow (their orientation does not de-
pend anymore on their initial orientation α). The
agreement between PG,L and PG,Pr is very good.

• For t = 7T , PG,L and PG,L,∞ are even closer.
PG,L,∞ fails to predict PG,Pr=1 but performs rea-
sonably for PG,Pr=32. Actually, an estimate of
Tmix from (7) gives 4.5T for Pr = 1 and 6.5T for
Pr = 32, which is consistent with the discrepancy

between PG,Pr=1 and PG,Pr=32 at t = 7T .

It is worth observing that the pdf of 1√
τ
fails to predict

PG,Pr because of the dependence of λ with τ , which is sig-
nificant even at very long times (section V)1. We observe
that the time scale for the much simpler PG,L,∞ to be-
come a good prediction for the gradient, i.e the timescale
for PG,L to converge to PG,L,∞, seems to be of the order
of Tmix. This non-trivial behavior may be determined by
the dependence of τ with τ̃ (9). If we had τ ∼ τ̃ , which

1The similarity between the pdf of 1√
τ
and PG,Pr=1(t = 7T ) (figure

3) is not explained by our theory, as showed by the significant
difference between the pdf of 1√

τ
and PG,L.
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FIG. 3. Comparison between PG,Pr obtained from the direct numerical simulations and the theoretical predictions PG,L
(eq. 11), PG,L,∞ (eq. 13) and the pdf of 1√

τ
(τ is defined in (9)), obtained from the calculation of the Lagrangian stretching

properties of the flow calculated with the trajectories. We have only plotted the curves PG,Pr corresponding to direct numerical
simulations consistent with the infinite initial gradient hypothesis.

is expected as t → 0, this convergence would have been
of the order of 1

2λ ≈ 1
2S ≈ T

2 (equations (10) and (11)).
It is one order of magnitude longer. The reason could lie
in the fact that τ̃ and τ quickly become independent.

Equation (11), where the joint pdf of λ and G is re-

placed by the joint pdf of λ and Gκ, is a fair approxima-
tion to PG,Pr≤32 at any time (not shown). This extends
our results to finite initial gradients, but concentrated
on length scales not large compared to the diffusive cut-
off of the flow, such that a Lagrangian straining theory
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FIG. 4. Numerically determined pdf QPr of φ̃ ≡ A0 − |φ|
at different times t = 1

4
T, T, 2T, 4T and 7T and for Prandtl

numbers Pr = 1, 4, 8 and 32. Log-log scale.

approach remains possible.

B. Reactants’ fields

We calculate the pdf QPr of φ̃ ≡ A0 − |φ| using our 34
simulations ensemble for the entire range of Prandtl num-
bers. On figure 4, we show QPr for Pr = 1, 4, 8 and 32
and for 0.25T ≤ t ≤ 7T . Our objective is to compare the
theoretical prediction (18) to these numerical results.

Figure 5 shows
√
PrQPr for a wide range of Prandtl

numbers over the first few turnover times. The depen-
dence in

√
κ predicted in (18) is well achieved, except

at small times (t = 0.25T ) especially for small diffusion
(Pr = 32), i.e. when the infinite gradient assumption is
again violated in the numerical simulations. It also fails
at t = 7T because T > Tmix.
Next, we compare the time dependence predicted in

(18) to the numerical results. For Pr = 8, we show the

product of QPr with
√
Pr 〈1/G〉

〈L〉 on figure 6. The con-

tact line length 〈L〉 is calculated form Pλ using (6), and
〈1/G〉 from the integral

∫∞
0

1
gPG,L(t, g)dg where PG,L is

defined in (11). The densities Pλ and PG,L are deter-
mined as explained in section V from the computation of
Lagrangian trajectories. The curves converges together,

except at very small times for values of |φ| close to A0 (φ̃
close to 0). As expected, (18) does not work either for
t > Tmix, as shown by the curves t = 7T and t = 12T .
The shape of the reactants’ pdf shown as

QPr=8

√
Pr 〈1/G〉

〈L〉 on figure 6 is very well reproduced
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FIG. 5. Numerically determined pdf QPr of φ̃ ≡ A0 − |φ|
multiplied by

√
Pr for Pr = 1, 4, 8 and 32 and t = 1

4
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4T and 7T . Log-log scale.
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FIG. 6. Time evolution of QPr=8

√
Pr

〈1/G〉
〈L〉 . 〈L〉 and

G are defined respectively in equations (6) and (8) and
are calculated from trajectories, as described in sec-
tion V. The red curve (theoretical prediction) corresponds
4
√

ν
AA0

Erf−1
′ (A0−φ̃

A0

)
, where Erf is the Gauss error function.

Log-log scale.



9

by 4ν
AA0

Erf−1′
(
A0−φ̃
A0

)
, which confirms the theoretical

prediction (18).

VII. CONCLUSION AND DISCUSSION

We have considered the early regime of an instanta-
neous chemical reaction in a two-dimensional Navier-
Stokes flow, for segregated reactants initially separated
by infinite gradients. The time scales considered here are
shorter than the mix-down time scale from the integral
length scale to the diffusive cutoff (Tmix given in (7)). As-
suming that the singular vector associated with a FTLE
does not depend on time and is equal to the forward
Lyapunov vector, we have adopted a Lagrangian strain-
ing theory approach and showed numerically its success
in predicting (a) the statistics of the diffusive flux of fast
reacting chemicals along their interface (11), and thus the
chemical speed, (b) the probability distribution of the re-
actants (18). We have put the emphasis on the effect of
the reactants diffusion, showing (a) that the distribution

of the gradients along the contact line, rescaled by κ
1
2 ,

does not depend on κ (b) that the distribution of the
reactant concentration, when it is not too close to A0, is
proportional to κ

1
2 .

At the very early stage, for about one turnover time,
predicting these statistics requires to know the joint
statistics of G(λ, τ, τ̃ , γ ≡ Ψ+ − α) (equation 8) and λ,
which is given by the joint statistics of λ, τ and τ̃ (γ
is a random angle because α is a random angle, and is
thus independent of the other variables). At moderate
time scales (a few turnover times), the knowledge of the
joint pdf of λ and τ is sufficient. More work is needed to
understand these distributions, i.e the marginal distribu-
tions of λ, τ and τ̃ and how these three variables depend
on each other.
Previous studies ([16, 18]) investigating the two-

dimensional mixing in the upper layer of the ocean sug-
gest that it might be possible to recover the distribu-
tion of λ from the distribution of the strain (which is
λ as t → 0), a more accessible Eulerian quantity, and
from the time evolution of the mean Lyapunov expo-
nent 〈λ〉. Specifically, they observed that the distribution
of λ

〈λ〉 does not change significantly in time over several

turnover times and is given by a Weibull distribution. We
have observed the same behavior in our flow (not shown),
with the distribution of the strain being very well ap-
proximated by a Weibull distribution of shape parameter
1.81. The time evolution of 〈λ〉 in a chaotic ergodic flow
was theoretically predicted by [6], a prediction which was
shown to perform well in the mixing layer of the ocean
([13]). Nevertheless, the mechanisms in two-dimensional
Navier-Stokes flows (or in similar geophysical flows) be-
hind the evolution of the finite time Lyapunov exponent
distribution toward smaller values (figure 1) were not ad-
dressed in the literature to our knowledge. Although this
aspect deserves more investigation, we can speculate that
parcels tend to stay longer in area of low strain than in
areas of high strain. For example, a parcel can be cap-
tured in a vortex for a long time but travels very quickly
in areas of high strain. Hence we would have two expla-
nations for this shift: (a) the fact that regions with low
strain (e.g vorticies) have smaller velocities than regions
of high strain; (b) the existence of barriers of transport
at the edge of the vorticies that act like parcel traps.

We have shown that the distribution of τ can be ob-
tained from the strain distribution below one turnover
time. Its time evolution at longer time scale has to be
studied in more detail, especially its asymptotic form.
The dependence between τ and λ is a complex issue
which needs to be addressed. We expect it to be strongly
dependent on the nature of the flow, especially on its
Lagrangian correlation time. In our two-dimensional
Navier-Stokes flow, areas of low stretching associated
with long correlation times (e.g. vorticies) could explain
the strong dependence between λ and 1

τ where they are
both small compared to their ensemble mean (figure 1).

Some studies (e.g. [19, 20]) have shown, both nu-
merically and theoretically, the relevance of Lagrangian
stretching theories when the length scale of the tracer
are much smaller than the scale of the flow, like in the
present study. However, this was done for simple pre-
scribed smooth chaotic flows and in the long time decay.
This theory was recently applied by [21] to infinite chem-
istry in the long time decay. Here we apply it for the
initial regime. A comprehensive picture would be given
by studying intermediate time scales, which will be the
subject of a future paper.
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